
EBOOK

 API Strategy:  
 Best Practices for Platform  
 Engineering Leaders
 Scale Operations, Fight Sprawl, and Build a Resilient API Platform
 By Andrew Stiefel and Akash Ananthanarayanan, F5 NGINX

https://www.nginx.com


API STRATEGY: BEST PRACTICES FOR PLATFORM ENGINEERING LEADERS 2

Table of Contents

Introduction: API Sprawl  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .4

API Adoption Continues to Increase  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5

Factors Driving API Sprawl  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6

Consequences of API Sprawl  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .7

How Can Platform Engineering Leaders Respond?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8

Prerequisite: Install and Configure API Connectivity Manager  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

1. Create a Single Source of Truth for Your APIs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .10

Build an Inventory of Your APIs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .10

Streamline API Discovery with an API Developer Portal   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

Tutorial: Create a Developer Portal with NGINX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

Automatically Generate API Documentation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .12

Ensure Proper Versioning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13

Generate API Credentials  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14

Try Out APIs on the Developer Portal  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .16

2. Put an API Governance Plan in Place   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

The Importance of API Governance  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

Why Do You Need API Governance?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

What Types of APIs Do You Need to Govern?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .18

Common API Governance Models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .19

Implement Adaptive Governance to Empower Developers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20

Tutorial: Govern Your APIs with NGINX  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20

Provide Shared Infrastructure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .21

Give Teams Agency  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

Balance Global Policies and Local Control  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

3. Adopt an API-First Approach to Building Microservices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26

What Is API-First?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26

The Value of API-First for Organizations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

The Importance of Adopting a Common API Specification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

The OpenAPI Specification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

How to Use NGINX for API-First Software Development   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .31

Publish APIs to the API Gateway  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32

Generate API Documentation for the Developer Portal  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32

Apply Positive Security to Protect API Endpoints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32



API STRATEGY: BEST PRACTICES FOR PLATFORM ENGINEERING LEADERS 3

4. Manage APIs Across Multi-Cloud and Hybrid Architectures  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Common Multi-Cloud and Hybrid API Deployment Patterns  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Tutorial: Enable High Availability for API Gateways in Multi-Cloud and Hybrid Environments  .  .  .  .  .  .  .  . 34

Deploy NGINX Plus Instances as API Gateways  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35

Set Up an Infrastructure Workspace  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36

Create an Environment and API Gateway Clusters   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37

Deploy an Environment with One API Gateway Cluster  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38

Create an Environment and API Gateway Cluster  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38

Assign API Gateway Instances to an API Gateway Cluster  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39

Deploy an Environment with Multiple API Gateway Clusters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .41

Create an Environment and API Gateway Cluster  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42

Assign API Gateway Instances to an API Gateway Cluster  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43

Apply Global Policies  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45

5. Protect APIs Across Every Touchpoint  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47

The Rise of API-First Software Development   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47

The Attack Surface Grows as APIs Proliferate  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48

Thwarting API Attacks Requires the Right Strategy and Tools   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

What Is API Security Posture Management?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50

What Is API Security Testing?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .51

What Is API Runtime Protection?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .51

API Security Best Practices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53

6. Identify and Track Important API Metrics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54

Operational Metrics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54

Infrastructure Teams   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55

Application Teams  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55

Adoption Metrics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55

Product Metrics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 56

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57



44INTRODUCTION

Introduction: API Sprawl

APIs power modern business . Enterprises use APIs to connect across 
internal teams, integrate with business partners, and deliver customer 
experiences . APIs are also one of the most popular methods that 
organizations use to modernize their existing software applications . 

According to F5’s 2021 State of Application Strategy Report: 

• 58% of organizations are adding a layer of APIs to enable modern user interfaces 

• 51% are adding modern application components (for example, Kubernetes) 

• 47% are refactoring (modifying application code itself) 

• 40% are moving to public cloud (lifting and shifting) without modernizing 

58%
51%

47%
40%

Adding a 
layer of APIs to 
enable modern 
user interfaces

Refactoring 
(modifying 
application 
code itself)

Adding 
modern application 

components (for 
example, Kubernetes)

Moving to 
public cloud 

(lifting and shifting) 
without modernizing

Source: F5’s 2021 State of Application Strategy Report

Figure 1: API Usage in Organizations

https://www.f5.com/content/dam/f5/corp/global/pdf/reports/global-state-of-application-strategies-2021.pdf
https://www.f5.com/content/dam/f5/corp/global/pdf/reports/global-state-of-application-strategies-2021.pdf


55INTRODUCTION

As businesses and applications scale, so does the number of APIs they have in production . 
According to TechRadar, the average enterprise today is leveraging a total of 15,564 APIs,  
up 201% year-on-year . 

New trends in software architecture and design are increasing complexity . Cloud-native  
applications are more often distributed and decentralized by design – composed of dozens, 
hundreds, or even thousands of APIs deployed across cloud, on-premises, and edge 
environments . 

This proliferation of APIs across teams, infrastructure, and applications is called API sprawl . 
Recent research from F5’s Office of the CTO identified continuous API sprawl as a significant 
threat to businesses undergoing digital transformation . But what does that mean? 

API sprawl describes two intertwined challenges that arise as organizations implement 
digital transformation: exponential growth in the number of APIs and the physical 
distribution of APIs across multiple architectures and teams . 

A P I  A D O P T I O N  C O N T I N U E S  T O  I N C R E A S E

According to a recent survey by Gartner, enterprise API adoption has increased dramatically  
since 2019: 

• Private APIs – 98%, up from 88% in 2019 

• Third-Party APIs – 94%, up from 52% in 2019 

• Partner APIs –90%, up from 68% in 2019

• Public APIs – 80%, up from 46% in 2019

201920192019 2019 20222022 20222022

Private APIs Third-Party APIs Partner APIs Public APIs 

52%

94%88%
98%

46%

80%
68%

90%

Source: Mark O’Neill, Chief of Research for Software Engineering, Gartner (2022) 

NEW TRENDS IN SOFTWARE 
ARCHITECTURE AND 
DESIGN ARE INCREASING 
COMPLEXITY

Figure 2: API Adoptions Continues  
to Increase

https://www.techradar.com/news/apis-are-becoming-a-cybersecurity-disaster-zone
https://www.f5.com/pdf/reports/f5-office-of-the-cto-report-continuous-api-sprawl.pdf
https://www.linkedin.com/posts/markwoneill_how-have-api-trends-changed-pre-pandemic-activity-6971460039060373504-u7Xz/


66INTRODUCTION

FA C T O R S  D R I V I N G  A P I  S P R AW L 

Many factors contribute to API sprawl . Some of the most common include:

• Microservices architectures – The growing adoption of microservices architectures 
leads to the proliferation of API endpoints as new services come online . 

• Multi-cloud and hybrid infrastructures – Today 81% of enterprises operate across  
three or more architectures, including public clouds, on-premises data centers, and 
edge infrastructures . 

• DevOps practices – Developers can rapidly churn out dozens of APIs, or many versions  
of a single API, over a short period of time . 

• Abandoned APIs – As developers move on to support and work on other projects,  
they stop managing and maintaining the APIs they created . 

• Business complexity – Globally distributed teams and different lines of business  
create ad hoc APIs for different processes, often with little oversight and security .

Unless preventive measures are put into place, these factors can quickly lead to API  
sprawl becoming endemic across your platform infrastructure . This leads to many  
significant consequences . 

 Many factors contribute to API sprawl. Some of the most common include: 

Microservices Architectures
The growing adoption of microservices architectures leads to the proliferation 
of API endpoints as new services come online.

Multi-cloud and Hybrid Infrastructures
Today 81% of enterprises operate across three or more architectures, including 
public clouds, on-premises data centers, and edge infrastructures.

DevOps Practices
Developers can rapidly churn out 
dozens of APIs, or many versions of a 
single API, over a short period of time.

Abandoned APIs 
As developers move on to support 
and work on other projects, they 
stop managing and maintaining 
the APIs they created. 

Business Complexity
Globally distributed teams and 
di erent lines of business create ad hoc 
APIs for di erent processes, often with 
little oversight and security.

 02

 03

 04

 05

 Factors Driving API Sprawl

 01

https://www.f5.com/resources/reports/state-of-application-strategy-report
https://www.f5.com/resources/reports/state-of-application-strategy-report


77INTRODUCTION

C O N S E Q U E N C E S  O F  A P I  S P R AW L 

Many businesses don’t yet recognize API sprawl as a significant problem – but it is . 
Organizations that understand and address the root causes of API sprawl are the ones  
that will thrive in the coming decade . 

API sprawl creates both operational and security challenges . As API endpoints proliferate 
across multiple teams and environments, securing and governing APIs becomes a monumental  
task . For enterprises, API sprawl often results in hidden costs – lower developer productivity,  
more rework, slower reviews – that are not easily measurable until it is too late . 

Some of the most common consequences of API sprawl include: 

• Increased complexity – Keeping track of changes, or who is responsible for a particular 
API, creates a lack of clarity and can lead to delays in releases and increased costs . 

• Diminished visibility – Multi-cloud and hybrid architectures often use different tooling, 
making it difficult to get a unified, consistent view of API traffic and vulnerabilities . 

• Decreased reliability – With increased complexity and lack of visibility comes an 
increase in misconfigurations, which can result in partial or full outages . 

• Elevated threats – It is challenging to monitor who has access to APIs and what they 
can do . This in turn heightens the risk of data breaches and other security issues . 

• Lower productivity – With too many APIs, it becomes difficult for developers to find them .  
Time is wasted on searches, and teams might end up recreating APIs that already exist . 

• Less agility – It is risky to make changes to an API when there are dependencies on 
it that might be unknown . The inability to react quickly results in missed opportunities 
and a competitive disadvantage . 

• Higher costs – A higher numbers of APIs usually corresponds to higher development 
and maintenance costs . 

Ultimately, API sprawl indicates a lack of software development, governance, and security 
practices that are adequate for the growing demands of complex engineering organizations . 
Without the proper practices and tooling in place, it is hard to have a clear picture of what is 
happening within your infrastructure . 

API SPRAWL CREATES  
BOTH OPERATIONAL AND 
SECURITY CHALLENGES



88INTRODUCTION

H O W  C A N  P L AT F O R M  E N G I N E E R I N G  L E A D E R S  R E S P O N D ? 

To start, identify whether you currently face a problem with API sprawl by answering  
these questions: 

• Do you have an up-to-date inventory of your APIs? 

• Do you have clear, up-to-date documentation for all your APIs? 

• Do you know where each API is running? 

• Do you have an established owner for each API? 

• Does each API have a clear purpose that doesn’t overlap with another API? 

• Do security tests on your APIs return a clean bill of health with no vulnerabilities? 

If you answered ‘no’ to any of these questions, you either are experiencing API sprawl in 
your organization or are at high risk of developing problems in the future . 

The first step in building a resilient API infrastructure is getting a handle on API sprawl . 
This usually starts with the creation of holistic API strategy that incorporates best practices 
around persistent API ownership and the creation of a central API or service catalog . Next, 
overlay API governance and security to streamline API lifecycle management in a practical 
and scalable manner . 

To start, identify whether you currently face a problem with API sprawl 
by answering these questions: 

Do you have an up-to-date inventory 
of your APIs? 

Do you have clear, up-to-date 
documentation for all your APIs? 

Do you know where each 
API is running? 

Do you have an established 
owner for each API? 

Does each API have a 
clear purpose that doesn’t 
overlap with another API? 

Do security tests on your 
APIs return a clean bill of 
health with no vulnerabilities?

How Can Platform Engineering 
Leaders Respond? 

 02
 03
 04

 05

 06

 01



99INTRODUCTION

Organizations farther along their API journeys typically experience a reduced risk of data  
breaches, better agility to deliver new capabilities to market, improved developer satisfaction,  
and ultimately, reduced costs when operating their API platform . 

The rest of this guide explores some of the best practices your platform teams can put into 
place to start managing continuous API sprawl in your organization . Each section concludes 
with a short tutorial demonstrating how to quickly implement each best practice with tools 
from NGINX .

P R E R E Q U I S I T E :  I N S TA L L  A N D  C O N F I G U R E  A P I 
C O N N E C T I V I T Y  M A N A G E R 

If you plan to do the tutorials in this eBook, you need to install and configure  
API Connectivity Manager, part of F5 NGINX Management Suite . 

1 . Obtain a trial or paid subscription for tyour APIs . Start a free 30-day trial of the  
NGINX API Connectivity Stack to get started . 

2 . Install NGINX Management Suite . In the Install Management Suite Modules section, 
follow the instructions for API Connectivity Manager (and optionally other modules) . 

3 . Add the license for each installed module . 

4 . (Optional .) Set up TLS termination and mTLS to secure client connections to  
NGINX Management Suite and traffic between API Connectivity Manager and  
NGINX Plus instances on the data plane, respectively . 

ORGANIZATIONS FARTHER 
ALONG THEIR API JOURNEYS 
TYPICALLY EXPERIENCE  
A REDUCED RISK OF  
DATA BREACHES

https://www.nginx.com/products/nginx-management-suite/api-connectivity-manager/
https://www.nginx.com/products/nginx-management-suite/
https://www.nginx.com/free-trial-api-connectivity-stack/
https://www.nginx.com/free-trial-api-connectivity-stack/
https://docs.nginx.com/nginx-management-suite/admin-guides/installation/on-prem/install-guide/
https://docs.nginx.com/nginx-management-suite/admin-guides/installation/on-prem/install-guide/
https://docs.nginx.com/nginx-management-suite/admin-guides/getting-started/add-license/
https://docs.nginx.com/nginx-management-suite/admin-guides/getting-started/secure-traffic/


10CHAPTER 1 – CREATE A SINGLE SOURCE OF TRUTH FOR YOUR APIs 10

1. Create a Single Source of Truth  
for Your APIs

As the number of APIs continues to grow, the complexity of managing your API portfolio 
increases . It gets harder to discover and track what APIs are available and where they 
are located, as well as find documentation about how to use them . Without a holistic API 
strategy in place, APIs can proliferate faster than Platform Ops teams can manage them .  

Ultimately, APIs can’t be useful until they are used – which means API consumers need 
a way to find them . Without the proper systems in place, API sprawl makes it difficult for 
developers to find the APIs they need for their applications . At worst, lists of APIs are kept 
by different lines of business and knowledge is shared across teams only through informal 
networks of engineers . 

B U I L D  A N  I N V E N T O RY  O F  YO U R  A P I s 

One of the first steps toward fighting API sprawl is creating a single source of truth for your 
APIs . That process starts with building an inventory of your APIs . An accurate inventory is a 
challenge, though – it’s a constantly moving target as new APIs are introduced and old ones 
are deprecated . You also need to find any "shadow APIs" across your environments – APIs 
that have been forgotten over time, were improperly deprecated, or were built outside of 
your standard processes . 

Unmanaged APIs are one of the most insidious symptoms of API sprawl, with both obvious 
security implications and hidden costs . Without an accurate inventory of available APIs, your  
API teams must spend time hunting down documentation . There’s significant risk of wasteful,  
duplicated effort as various teams build similar functionalities . And without proper version 
control, changes to a given API can lead to costly cascades of rework or even outages . 

Techniques like automated API discovery can help you identify and treat the symptom of 
unmanaged APIs . But to solve the problem, you need to eliminate the root causes: broken 
processes and lack of ownership . In practice, integrating API inventory and documentation 
into your CI/CD pipelines is the only approach that ensures visibility across your API portfolio  
in the long term . Instead of having to manually track every API as it comes online, you only 
need to identify and remediate exceptions .

APIs CAN PROLIFERATE 
FASTER THAN PLATFORM OPS 
TEAMS CAN MANAGE THEM

UNMANAGED APIs ARE ONE 
OF THE MOST INSIDIOUS 
SYMPTOMS OF API SPRAWL



11CHAPTER 1 – CREATE A SINGLE SOURCE OF TRUTH FOR YOUR APIs 11

S T R E A M L I N E  A P I  D I S C O V E RY  W I T H  A N  
A P I  D E V E L O P E R  P O R TA L 

Streamlining API discovery is one area where an API developer portal can help . It provides 
a central location for API consumers to discover APIs, read documentation, and try out APIs 
before integrating them into their applications . Your API developer portal can also serve as 
the central API catalog, complete with ownership and contact info, so everyone knows who 
is responsible for maintaining APIs for different services .  

A core component of our API reference architecture, an effective API developer portal enables  
a few key use cases: 

• Streamline API discovery – Publish your APIs in an accessible location so developers 
can easily find and use your APIs in their projects . 

• Provide clear, up-to-date documentation – Ensure developers always have access to 
the most up-to-date documentation about how an API functions . 

• Ensure proper versioning – Introduce new versions of an API without creating outages 
for downstream applications, with support for future versioning . 

• Generate API credentials – Streamline the onboarding process so developers can sign 
in and generate credentials to use for API access . 

• Try out APIs – Enable developers to try out APIs on the portal before they integrate 
them into their projects . 

As part of your API strategy, you need to figure out how to maintain your API developer portal .  
It’s crucial to have an automated, low-touch approach that seamlessly integrates publishing, 
versioning, and documenting APIs without creating more work for your API teams .

T U T O R I A L :  C R E AT E  A  D E V E L O P E R  P O R TA L  W I T H  N G I N X 

To enable seamless API discovery, you need to create a single source of truth where 
developers can find your APIs, learn how to use them, and onboard them into their projects . 
That means you’ll need a developer portal – and up-to-date documentation . 

API Connectivity Manager, part of F5 NGINX Management Suite, helps you integrate 
publication, versioning, and documentation of APIs directly into your development workflows,  
so your API developer portal is never out of date . API Connectivity Manager not only makes 
it easy to create API developer portals to host your APIs and documentation, it lets you add 
custom pages and completely customize the developer portal to match your branding . 

Let’s look at how API Connectivity Manager helps you address some specific use cases . 
Refer to the API Connectivity Manager documentation for detailed instructions about  
setting up a developer portal cluster and publishing a developer portal .

YOU NEED TO FIGURE OUT 
HOW TO MAINTAIN YOUR API 
DEVELOPER PORTAL

https://www.nginx.com/blog/reference-architecture-real-time-apis/
https://www.nginx.com/products/nginx-management-suite/api-connectivity-manager/
https://www.nginx.com/products/nginx-management-suite/
https://docs.nginx.com/nginx-management-suite/acm/getting-started/add-devportal/
https://docs.nginx.com/nginx-management-suite/acm/how-to/devportals/publish-to-devportal/


12CHAPTER 1 – CREATE A SINGLE SOURCE OF TRUTH FOR YOUR APIs 12

Automatically Generate API Documentation 

There is often a wide gulf between the level of quality and detail your API consumers 
expect from documentation and what your busy API developers can realistically deliver with 
limited time and resources . Many homegrown documentation tools fail to integrate with the 
development lifecycle or other engineering systems . This doesn’t have to be the case . 

How NGINX can help: API Connectivity Manager uses the OpenAPI Specification to publish 
APIs to the API gateway and automatically generate the accompanying documentation  
on the developer portal, saving API developers time and ensuring API consumers can 
always find what they need . You can upload OpenAPI Specification files directly via the  
API Connectivity Manager user interface, or by sending a call via the REST API . This makes 
it easy to automate the documentation process via your CI/CD pipeline . 

To publish documentation in the API Connectivity Manager user interface, click Services in 
the left navigation column to open the Services tab as shown in Figure 1 . Click the name of 
your Workspace or create a new one . 

Once you are in the Workspace, click API Docs below the box that has the name and 
description of your Workspace (example-api in the screenshot) . Simply click the  
 Add API Doc  button to upload your OpenAPI Specification file . Click the  Save  button  
to publish the documentation to the developer portal .

Figure 3: Creating Documentation by 
Uploading an OpenAPI Specification 
File to API Connectivity Manager

https://spec.openapis.org/oas/latest.html
https://docs.nginx.com/nginx-management-suite/acm/how-to/services/publish-api/#create-a-service-workspace


13CHAPTER 1 – CREATE A SINGLE SOURCE OF TRUTH FOR YOUR APIs 13

Ensure Proper Versioning 

Version changes must always be handled with care, and this is especially true in microservices  
environments where many services might be interacting with a single API . Without a careful 
approach to introducing new versions and retiring old ones, a single breaking change can 
lead to a cascading outage across dozens of microservices . 

How NGINX can help: Using OpenAPI Specification files with API Connectivity Manager 
enables easy version control for your APIs . In addition to setting the version number,  
you can provide documentation for each version and manage its status (latest, active, 
retired, or deprecated) .

To publish a new version of an API, click Services in the left navigation column . Click the  
name of your Workspace in the table, then click the name of your Environment on the page 
that opens . Next, click the  + Add Proxy  button . From here you can upload the OpenAPI 
Specification, set the base path and version to create the URI (for example, /api/v2/), and 
input other important metadata . Click the  Publish  button to save and publish your API proxy .  

The original version of the API remains available alongside your new version . This gives your  
users time to gradually migrate their applications or services to the most recent version . 
When you are ready, you can fully deprecate the original version of your API . Figure 4 shows 
two versions of the Sentence Generator API: published and in production .

Figure 4: Creating Documentation by 
Uploading an OpenAPI Specification 
File to API Connectivity Manager

VERSION CHANGES MUST 
ALWAYS BE HANDLED  
WITH CARE



14CHAPTER 1 – CREATE A SINGLE SOURCE OF TRUTH FOR YOUR APIs 14

TO DRIVE ADOPTION OF YOUR 
APIs, YOU NEED TO MAKE THE 
ONBOARDING PROCESS AS 
SIMPLE AS POSSIBLE 

Generate API Credentials 

To drive adoption of your APIs, you need to make the onboarding process as simple  
as possible for your API consumers . Once users find their APIs, they need a method to 
securely sign in to the developer portal and generate the credentials that grant them  
access to your API . Most often, you’ll want to implement a self-managed workflow so  
users can sign up on their own . 

How NGINX can help: API Connectivity Manager supports self-managed API workflows 
on the developer portal so users can generate their own credentials for accessing APIs . 
Credentials can be managed on the portal using API keys or HTTP Basic authentication .  
You can also enable single sign-on (SSO) on the developer portal to secure access and 
allow authenticated API consumers to manage credentials . 

To quickly enable SSO on the developer portal, click Infrastructure in the left navigation 
column . Click the name of your Workspace in the table (in Figure 5, it’s team-sentence) .

In the table on the Workspace page, click the name of the Environment you want to 
configure (in Figure 6, it’s prod) .

Figure 5: List of Workspaces on the 
Infrastructure Tab

Figure 6: List of Environments in  
a Workspace 

https://swagger.io/docs/specification/authentication/api-keys/
https://swagger.io/docs/specification/authentication/basic-authentication/


15CHAPTER 1 – CREATE A SINGLE SOURCE OF TRUTH FOR YOUR APIs 15

In the Developer Portal Clusters section, click the … icon in the Actions column for  
the developer portal you are working on and select Edit Advanced Config from the  
drop-down menu . In Figure 7, the single Developer Portal Cluster is devportal-cluster .

Next, click Global Policies in the left navigation column (as shown in Figure 8) . Configure the 
OpenID Connect Relying Party policy by clicking on the … icon in the rightmost column of 
its row and selecting Add Policy from the drop-down menu . For more information, see the 
API Connectivity Manager documentation .

Figure 7: Selecting Edit Advanced 
Config Option for a Developer  
Portal Cluster

Figure 8: Configuring the OpenID 
Connect Relying Party Global Policy 
to Enable Single Sign-On

https://docs.nginx.com/nginx-management-suite/acm/how-to/infrastructure/enable-sso-devportal/


16CHAPTER 1 – CREATE A SINGLE SOURCE OF TRUTH FOR YOUR APIs 16

Try Out APIs on the Developer Portal 

One way you might measure the success of your API strategy is to track the “time to first  
API call” metric, which reveals how long it takes a developer to send a basic request with 
your API . 

We’ve established that clear, concise documentation is essential as the first entry point  
for your API . It’s where your users get a basic understanding of how to work with an API . 
Usually, developers must then write new code to integrate the API into their application before  
they can test API requests . You can help developers get started much faster by providing 
a way to directly interact with an API on the developer portal using real data – effectively 
making their first API call without writing a single line of new code in their application! 

How NGINX can help: Once you enable SSO for your API Connectivity Manager developer 
portals, API consumers can use the API Explorer to try out API calls on your documentation 
pages . They can use API Explorer to explore the API’s endpoints, parameters, responses, 
and data models, and test API calls directly with their browsers . 

Figure 9 shows the API Explorer in action – in this case, trying out the API Sentence Generator .  
The user selects the appropriate credentials, creates the request, and receives a response 
with actual data from the API . 

Figure 9: Testing an API on the 
Developer Portal 



17CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

2. Put an API Governance Plan in Place 
Today’s enterprise is often made up of globally distributed teams building and deploying APIs  
and microservices, usually across more than one deployment environment . According to 
F5’s State of Application Strategy in 2022 report, 81% of organizations operate across three 
or more environments ranging across public cloud, private cloud, on-premises, and edge . 

Ensuring the reliability and security of these complex, multi-cloud architectures is a  
major challenge . According to software engineering leaders surveyed in the F5 report, 
visibility (45%) and consistent security (44%) top the list of multi-cloud challenges faced  
by Platform Ops teams . 

With the growing number of APIs and microservices today, API governance is quickly 
becoming one of the most important topics for planning and implementing an enterprise-wide  
API strategy . But what is API governance, and why is it so important for your API strategy? 

T H E  I M P O R TA N C E  O F  A P I  G O V E R N A N C E 

At the most basic level, API governance involves creating policies and running checks and 
validations to ensure APIs are discoverable, reliable, observable, and secure . It provides 
visibility into the state of the complex systems and business processes powering your modern  
applications, which you can use to guide the evolution of your API infrastructure over time . 

Why Do You Need API Governance? 

The strategic importance of API governance cannot be overestimated – it’s the means by 
which you realize your organization’s overall API strategy . Without proper governance, you can  
never achieve consistency across the design, operation, and productization of your APIs . 

When done poorly, governance imposes burdensome requirements that slow teams down . 
When done well, however, API governance reduces work, streamlines approvals, and allows 
different teams in your organization to function independently while delivering on the overall  
goals of your API strategy .

ENSURING THE RELIABILITY 
AND SECURITY OF THESE 
COMPLEX, MULTI-CLOUD 
ARCHITECTURES IS A  
MAJOR CHALLENGE

https://www.f5.com/go/report/2022-state-of-application-strategy-report
https://www.nginx.com/resources/glossary/what-is-platform-ops/


18CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

What Types of APIs Do You Need to Govern? 

Building an effective API governance plan starts with identifying the types of APIs you have 
in production, and the tools, policies, and guidance you need to manage them . Today, most 
enterprise teams are working with four primary types of APIs: 

• Public APIs – Delivered to external consumers and developers to enable self-service 
integrations with data and capabilities 

• Private APIs – Used for connecting internal applications and microservices and only 
available to your organization’s developers 

• Partner APIs – Facilitate strategic business relationships by sharing access to your data 
or applications with developers from partner organizations 

• Third-Party APIs – Consumed from third-party vendors as a service, for example for 
handling payments or enabling access to data or applications 

Each type of API in the enterprise must be governed to ensure it is secure, reliable, and 
accessible to the teams and users who need to access it .

Public

Private

Partner
Third-Party

BUILDING AN EFFECTIVE API 
GOVERNANCE PLAN STARTS 
WITH IDENTIFYING THE 
TYPES OF APIs YOU HAVE 



19CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

C O M M O N  A P I  G O V E R N A N C E  M O D E L S 

There are many ways to define and apply API governance . At NGINX, we typically see 
customers applying one of two models: 

• Centralized – A central team reviews and approves changes; depending on the  
scale of operations, this team can become a bottleneck that slows progress . 

• Decentralized – Individual teams have autonomy to build and manage APIs;  
this increases time to market but sacrifices overall security and reliability . 

As companies progress in their API-first journeys, however, both models start to break down 
as the number of APIs in production grows . Centralized models often try to implement a  
one-size-fits-all approach that requires various reviews and sign-offs along the way . This slows  
down development teams and creates friction – and, in their frustration, developers sometimes  
even find ways to work around the requirements (the dreaded “shadow IT”) . 

The other model, decentralized governance, works well for API developers at first, but 
over time complexity increases . Unless the different teams deploying APIs communicate 
frequently, the overall experience becomes inconsistent across APIs . Each API is designed 
and functions differently, version changes result in outages between services, and security is  
enforced inconsistently across teams and services . For the teams building APIs, the additional  
work and complexity eventually slows development to a crawl, just like the centralized model . 

Cloud-native applications rely on APIs for the individual microservices to communicate 
with each other, and to deliver responses back to the source of the request . As companies 
continue to embrace microservices for their flexibility and agility, API sprawl will not be 
going away . Instead, you need a different approach to governing APIs in these complex, 
constantly changing environments .

API SPRAWL WILL NOT  
BE GOING AWAY

THERE ARE MANY WAYS  
TO DEFINE AND APPLY  
API GOVERNANCE

https://www.nginx.com/resources/glossary/api-first/
https://www.nginx.com/blog/5-ways-to-fight-api-sprawl-and-why-you-should-care/
https://www.nginx.com/blog/5-ways-to-fight-api-sprawl-and-why-you-should-care/


20CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

I M P L E M E N T  A D A P T I V E  G O V E R N A N C E  T O  
E M P O W E R  D E V E L O P E R S 

Fortunately, there is a better way . Adaptive governance offers an alternative model that 
empowers API developers while giving Platform Ops teams the control they need to ensure 
the reliability and security of APIs across the enterprise . 

At the heart of adaptive governance is balancing control (the need for consistency) with 
autonomy (the ability to make local decisions) to enable agility across the enterprise . In practice,  
the adaptive governance model unbundles and distributes decision making across teams .  

Platform Ops teams manage shared infrastructure (API gateways and developer portals) and 
set global policies to ensure consistency across APIs . Teams building APIs, however, act as 
the subject matter experts for their services or line of business . They are empowered to set 
and apply local policies for their APIs – role-based access control (RBAC), rate limiting for 
their service, etc . – to meet requirements for their individual business contexts . 

Adaptive governance allows each team or line of business to define its workflows and 
balance the level of control required, while using the organization’s shared infrastructure .

T U T O R I A L :  G O V E R N  YO U R  A P I s  W I T H  N G I N X 

As you start to plan and implement your API strategy, follow these best practices to 
implement adaptive governance in your organization:

• Provide shared infrastructure – Provide teams with access to API gateways and 
developer portals for publishing API proxies and documentation . 

• Give teams agency – Help teams onboard and manage the lifecycle of their APIs within 
a shared workspace . 

• Balance global policies with local control – Set global policies across shared 
infrastructure while giving teams granular controls for their services . 

Let’s look at how you can accomplish these use cases with API Connectivity Manager, part 
of F5 NGINX Management Suite . 

ADAPTIVE GOVERNANCE 
OFFERS AN ALTERNATIVE 
MODEL THAT EMPOWERS  
API DEVELOPERS

FOLLOW THESE BEST 
PRACTICES TO IMPLEMENT 
ADAPTIVE GOVERNANCE  
IN YOUR ORGANIZATION



21CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

Provide Shared Infrastructure 

Teams across your organization are building APIs, and they need to include similar functionality  
in their microservices: authentication and authorization, mTLS encryption, and more . They also  
need to make documentation and versioning available to their API consumers, be those 
internal teams, business partners, or external developers .  

Rather than requiring teams to build their own solutions, Platform Ops teams can provide 
access to shared infrastructure . As with all actions in API Connectivity Manager, you can set  
this up in just a few minutes using either the UI or the fully declarative REST API, which enables  
you to integrate API Connectivity Manager into your CI/CD pipelines . In this chapter we use 
the UI to illustrate some common workflows . 

API Connectivity Manager supports two types of Workspaces: infrastructure and services . 
Infrastructure Workspaces are used by Platform Ops teams to onboard and manage shared 
infrastructure in the form of API Gateway Clusters and Developer Portal Clusters . Services 
Workspaces are used by API developers to publish and manage APIs and documentation . 

To set up a shared infrastructure, first add an infrastructure Workspace . Click Infrastructure 
in the left navigation column and then the  + Add  button in the upper right corner of the tab . 
Give your Workspace a name (in Figure 10 it’s team-sentence – an imaginary team building 
a simple “Hello, World!” API) .

Next, add an Environment to the Workspace . Environments contain API Gateway Clusters and  
Developer Portal Clusters . Click the name of your Workspace and then the ... icon in the 
Actions column . Select Add from the drop-down menu . 

Figure 10: Add Infrastructure 
Workspaces

PLATFORM OPS TEAMS  
CAN PROVIDE ACCESS TO 
SHARED INFRASTRUCTURE



22CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

The Create Environment drawer opens, as shown in Figure 11 . Fill in the Name (and optionally,  
Description) field, select the Type of Environment (Non-Prod or Prod), and click + Add for  
the infrastructure you want to add (API Gateway Clusters, Developer Portal Clusters, or both) .  
Click the  Create  button to finish setting up your Environment . For complete instructions,  
see the API Connectivity Manager documentation . 

Give Teams Agency 

It makes sense to provide clear separation for teams by line of business, geographic region,  
or another logical boundary – if that doesn’t deprive them of access to the tools they 
need to succeed . Teams need access to shared infrastructure without having to worry 
about activities at the global level . Instead, you want them to focus on defining their own 
requirements, charting a roadmap, and building their microservices . 

To help Platform Ops can provide Workspaces where teams can organize and operate their 
services and documentation . Workspaces create logical boundaries and provide access 
to different environments (e .g ., development, testing, and production) that are used while 
developing services . The process is similar to creating the infrastructure Workspace we made  
in the previous section . 

Figure 11: Create an Environment  
and Onboard Infrastructure

TEAMS NEED ACCESS TO 
SHARED INFRASTRUCTURE 
WITHOUT HAVING TO WORRY 
ABOUT ACTIVITIES AT  
THE GLOBAL LEVEL

https://docs.nginx.com/nginx-management-suite/acm/how-to/infrastructure/manage-api-infrastructure/


23CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

First, click Services in the left navigation column and then the  + Add  button in the upper 
right corner of the tab . Give your Workspace a name (in Figure 12, api-sentence for the 
“Hello, World” service) and optionally provide a description and contact information .

At this point, you can invite API developers to start publishing proxies and documentation in 
the Workspace you’ve created for them . For complete instructions on publishing API proxies 
and documentation, see the API Connectivity Manager documentation . 

Balance Global Policies and Local Control 

Adaptive governance requires a balance between enforcing global policies and empowering  
teams to make decisions that boost agility . You need to establish a clear separation of 
responsibilities by defining the global settings enforced by Platform Ops and setting “guardrails”  
that define the tools API developers use and the decisions they can make . 

API Connectivity Manager provides a mix of global policies (applied to shared infrastructure) 
and granular controls managed at the API proxy level . 

Global policies available in API Connectivity Manager include: 

• Error Response Format – Customize the API gateway’s error code and response structure 

• Log Format – Enable access logging and customize the format of log entries 

• OpenID Connect – Secure access to APIs with an OpenID Connect policy 

• Response Headers – Include or exclude headers in the response 

• Request Body Size – Limit the size of incoming API payloads 

• Inbound TLS – Set the policy for TLS connections with API clients 

• Backend TLS – Secure the connection to backend services with TLS

Figure 12: Create a  
Services Workspace

ADAPTIVE GOVERNANCE 
REQUIRES A BALANCE 
BETWEEN ENFORCING GLOBAL 
POLICIES AND EMPOWERING 
TEAMS TO MAKE DECISIONS 
THAT BOOST AGILITY

https://docs.nginx.com/nginx-management-suite/acm/how-to/services/publish-api/#publish-api-proxy


24CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

API proxy policies available in API Connectivity Manager include: 

• Allowed HTTP Methods – Define which request methods (GET, POST, PUT, etc .)  
can be used 

• Access Control – Secure access to APIs using different authentication and 
authorization techniques (API keys, HTTP Basic authentication, JSON Web Tokens) 

• Backend Health Checks – Run continuous health checks to avoid failed requests  
to backend services 

• CORS – Enable controlled access to resources by clients from external domains 

• Caching – Improve API proxy performance with caching policies 

• Proxy Request Headers – Pass select headers to backend services 

• Rate Limiting – Limit incoming requests and secure API workloads

In the following example, we use the UI to define a policy that secures communication 
between an API Gateway Proxy and backend services . 

Click Infrastructure in the left navigation column . After you click the name of the Environment  
containing the API Gateway Cluster you want to edit, the tab displays the API Gateway Clusters  
and Developer Portal Clusters in that Environment, as shown in Figure 13 .

Figure 13: Configure Global Policies 
for API Gateway Clusters and 
Developer Portal Clusters



25CHAPTER 2 – PUT AN API GOVERNANCE PLAN IN PLACE

In the row for the API Gateway Cluster to which you want to apply a policy, click the … icon  
in the Actions column and select Edit Advanced Configuration from the drop-down menu .  
In the drawer that opens, click Global Policies in the left column to display a list of all the 
global policies you can configure, as shown in Figure 14 .

Figure 14: Configure Policies for  
an API Gateway Cluster 



26CHAPTER 3 – ADOPT AN API-FIRST APPROACH TO BUILDING MICROSERVICES 26

3. Adopt an API-First Approach to  
Building Microservices  

As applications grow and scale, so does the number of microservices and APIs . While this is  
an unavoidable outcome in most cases, it creates significant challenges for the Platform Ops  
teams responsible for ensuring the reliability, scalability, and security of modern applications . 

As a first attempt to solve API sprawl, many organizations try to use a top-down approach by  
implementing tools for automated API discovery and remediation . While this is effective in  
the near term, it often imposes an undue burden on the teams responsible for building and 
operating APIs and microservices . They either must rework existing microservices and APIs 
to address security and compliance issues or go through an arduous review process to obtain  
the required approvals . 

Rather than putting in last-minute safeguards, a bottom-up approach to the problem is more  
effective over the long term . The teams building and operating APIs for different microservices  
and applications are the first to be involved, and often begin by adopting an API-first approach  
to software development in your organization . 

W H AT  I S  A P I - F I R S T ? 

APIs have been around for decades . But they are no longer simply “application programming 
interfaces” . At their heart, APIs are developer interfaces . Like any user interface, APIs  
need planning, design, and testing . API-first is about acknowledging and prioritizing the 
importance of connectivity and simplicity across all the teams operating and using APIs . 
It prioritizes communication, reuseability, and functionality for API consumers, who are 
almost always developers . 

There are many paths to API-first, but a design-led approach to software development is the 
end goal for most companies embarking on an API-first journey . In practice, this approach 
means APIs are completely defined before implementation . Work begins with designing and  
documenting how the API will function . The team relies on the resulting artifact, often referred  
to as the API contract, to inform how they implement the application’s functionality .

AS APPLICATIONS GROW  
AND SCALE, SO DOES THE 
NUMBER OF MICROSERVICES 
AND APIs

A DESIGN-LED APPROACH 
TO SOFTWARE DEVELOPMENT 
IS THE END GOAL FOR MOST 
COMPANIES EMBARKING ON  
AN API-FIRST JOURNEY

https://www.nginx.com/resources/glossary/what-is-platform-ops/
https://www.nginx.com/resources/glossary/api-first/
https://blog.postman.com/many-paths-to-api-first-choose-your-own-adventure/?utm_source=pocket_reader


27CHAPTER 3 – ADOPT AN API-FIRST APPROACH TO BUILDING MICROSERVICES 27

T H E  VA L U E  O F  A P I - F I R S T  F O R  O R G A N I Z AT I O N S 

An API-first strategy is often ideal for microservices architectures because it ensures 
application ecosystems begin life as modular and reusable systems . Adopting an  
API-first software development model provides significant benefits for both developers  
and organizations, including:

• Increased developer productivity – Development teams can work in parallel, able 
to update backend applications without impacting the teams working on other 
microservices which depend on the applications’ APIs . Collaboration is often easier 
across the API lifecycle since every team can refer to the established API contract . 

• Enhanced developer experience – API-first design prioritizes the developer experience 
by ensuring that an API is logical and well-documented . This creates a seamless 
experience for developers when they interact with an API . Learn why it’s so important 
for Platform Ops teams to take the API developer experience into consideration . 

• Consistent governance and security – Cloud and platform architects can organize 
the API ecosystem in a consistent way by incorporating security and governance rules 
during the API design phase . This avoids the costly reviews required when issues are 
discovered later in the software process .  

Adopting an API-first software development model provides significant benefits 
for both developers and organizations, including: 

Increased Developer Productivity

Enhanced Developer Experience 

Consistent Governance and Security 

Improved Software Quality 

Faster Time to Market

The Value of API-First for Organizations  

 02

 03

 04

 05

 01



28CHAPTER 3 – ADOPT AN API-FIRST APPROACH TO BUILDING MICROSERVICES 28

• Improved software quality – Designing APIs first ensures security and compliance 
requirements are met early in the development process, well before the API is ready to be  
deployed to production . With less need to fix security flaws in production, your operations,  
quality, and security engineering teams have more time to work directly with the 
development teams to ensure quality and security standards are met in the design phase . 

• Faster time to market – With fewer dependencies and a consistent framework for 
interservice communication, different teams can build and improve their services much 
more efficiently . A consistent, machine-readable API specification is one tool that can help  
developers and Platform Ops teams to work better together .

Overall, adopting an API-first approach can help a company build a more flexible, scalable, 
and secure microservices architecture .

T H E  I M P O R TA N C E  O F  A D O P T I N G  A  C O M M O N  
A P I  S P E C I F I C AT I O N 

In the typical enterprise microservices and API landscape, there are more components in 
play than a Platform Ops team can keep track of day-to-day . Embracing and adopting a 
standard, machine-readable API specification helps teams understand, monitor, and make 
decisions about the APIs currently operating in their environments . 

Adopting a common API specification can also help improve collaboration with stakeholders 
during the API design phase . By producing an API contract and formalizing it into a standard 
specification, you can ensure that all stakeholders are on the same page about how an API 
works . It also makes it easier to share reusable definitions and capabilities across teams . 

Using a common API specification has several benefits: 

• Improved interoperability – A common, machine-readable specification means different  
systems and clients can consume and use the API contract . This makes it easier for 
Platform Ops teams to integrate, manage, and monitor complex architectures . 

• Consistent documentation – The API contract is documented in a standard format, 
including the endpoints, request and response formats, and other relevant details . 
Many systems can use the contract to generate comprehensive documentation, providing  
clarity and making it easier for developers to understand how to use the API . 

THERE ARE MORE COMPONENTS 
IN PLAY THAN A PLATFORM 
OPS TEAM CAN KEEP TRACK  
OF DAY-TO-DAY



29CHAPTER 3 – ADOPT AN API-FIRST APPROACH TO BUILDING MICROSERVICES 29

• Better testing – API specifications can be used to automatically generate and run tests,  
which can help ensure the API implementation adheres to the contract and is working as  
expected . This can help identify issues with an API before it is published to production . 

• Improved security – Advanced security tools can use the OpenAPI Specification to 
analyze API traffic and user behavior . They can apply positive security by verifying that 
API requests comply with the methods, endpoints, parameters supported by the API 
endpoint supports . Non-conforming traffic is blocked by default, reducing the number 
of calls your microservices have to process . 

• Easier evolution – API specifications can help facilitate the evolution of the API contract 
and application itself over time by providing a clear and standard way to document 
and communicate changes in both machine- and human-readable format . When 
coupled with proper versioning practices, this helps minimize the impacts of API changes 
on API consumers and ensures that an API remains backward compatible .

Using a common API specification has several benefits:

The Importance of Adopting a 
Common API Specification

 02

 03

 04

 05

 01 Improved Interoperability 

Consistent Documentation 

Better Testing 

Improved Security

Easier Evolution

https://www.nginx.com/blog/secure-your-api-gateway-with-nginx-app-protect-waf/#Adding-Positive-Security-with-OpenAPI-Schema-Validation


30CHAPTER 3 – ADOPT AN API-FIRST APPROACH TO BUILDING MICROSERVICES 30

T H E  O p e n A P I  S P E C I F I C AT I O N 

Today there are three common API specifications, each supporting most types of APIs: 

• OpenAPI – JSON or YAML descriptions of all web APIs and webhooks 

• AsyncAPI – JSON or YAML descriptions of event-driven APIs 

• JSON Schema – JSON descriptions of the schema objects used for APIs 

REST APIs make up the bulk of APIs in production today, and the OpenAPI Specification is 
the standard way to write the API definition for a REST API . It provides a machine-readable 
contract that describes how a given API functions . The OpenAPI Specification is widely 
supported by a variety of API management and API gateway tools, including NGINX .  
The rest of this chapter focuses on how you can use the OpenAPI Specification to accomplish  
a few important use cases . 

The OpenAPI Specification is an open-source format for defining APIs in either JSON or YAML .  
You can include a wide range of API characteristics, as illustrated by the following API 
example – a simple HTTP GET request that returns a list of items on an imaginary grocery list . 

openapi: 3.0.0  
info:  
 version: 1.0.0  
 title: Grocery List API  
 description: An example API to illustrate the OpenAPI Specification   
 
servers:  
 - url:  https://api.example.io/v1   
 
paths:  
 /list:  
  get:  
   description: Returns a list of stuff on your grocery list               
   responses:  
    '200':  
     description: Successfully returned a list  
      content:  
       schema:  
        type: array  
         items:  
          type: object  
           properties:  
            item_name:  
             type: string

REST APIs MAKE UP  
THE BULK OF APIs IN 
PRODUCTION TODAY

https://spec.openapis.org/oas/latest.html
https://www.asyncapi.com/docs
https://json-schema.org


31CHAPTER 3 – ADOPT AN API-FIRST APPROACH TO BUILDING MICROSERVICES 31

Definitions that follow the OpenAPI Specification are both machine- and human-readable . 
This means there is a single source of truth that documents how each API functions, which 
is especially important in organizations with many teams building and operating APIs . Of 
course, to manage, govern, and secure APIs at scale you need to make sure that the rest of 
the tools in your API platform – API gateways, developer portals, and advanced security – 
also support the OpenAPI Specification . 

H O W  T O  U S E  N G I N X  F O R  A P I - F I R S T  
S O F T WA R E  D E V E L O P M E N T 

NGINX provides a set of lightweight, cloud-native tools that makes it easy to operate, 
monitor, govern, and secure APIs at scale . For example, API Connectivity Manager, part of 
F5 NGINX Management Suite, provides a single management plane for your API operations . 
With it you can configure and manage API gateways and developer portals . As an API-first  
tool itself, every function is accessible via REST API, making CI/CD automation and integration  
easy for DevOps teams .  

Using the OpenAPI Specification, you can use NGINX products to: 

• Publish APIs to the API gateway 

• Generate API documentation for the developer portal 

• Apply positive security to protect API endpoints

OpenAPI 
Specification

Security
Policy

API API
Documentation

API
Gateway

Developer
Portal

NGINX App 
Protect WAF

Figure 15: Use the OpenAPI 
Specification to Publish an API to  
the API Gateway, Documentation 
to the Developer Portal, and to Set 
Security Policies for the WAF via  
CI/CD Pipelines or the User Interface

https://www.nginx.com/products/nginx-management-suite/api-connectivity-manager/
https://www.nginx.com/products/nginx-management-suite/
https://www.nginx.com/resources/glossary/devops/


32CHAPTER 3 – ADOPT AN API-FIRST APPROACH TO BUILDING MICROSERVICES 32

Publish APIs to the API Gateway 

API Connectivity Manager uses the OpenAPI Specification to streamline API publication 
and management . API developers can publish APIs to the API gateway using either the user 
interface or the fully declarative REST API . APIs are added to the gateway as API proxies, which  
contain all the ingress, backend, and routing configurations the API gateway needs to direct 
incoming API requests to the backend microservice . You can use the REST API to deploy and  
manage APIs as code by creating simple CI/CD automation scripts with tools like Ansible .

For a full tutorial on using the OpenAPI Specification to publish an API, see the  
API Connectivity Manager documentation . 

Generate API Documentation for the Developer Portal 

Maintaining documentation is often a headache for API teams . But out-of-date documentation  
on developer portals is also a major symptom of API sprawl . API Connectivity Manager  
uses the OpenAPI Specification to automatically generate documentation and publish  
it to the developer portal, saving API developers time and ensuring API consumers can 
always find what they need . You can upload OpenAPI Specification files directly via the  
API Connectivity Manager user interface or REST API .  

For a full tutorial on publishing API documentation to the developer portal, see the  
API Connectivity Manager documentation .

Apply Positive Security to Protect API Endpoints 

You can also use the OpenAPI Specification to verify that API requests to the NGINX Plus API  
gateway comply with what an API supports . By applying positive security (a security model  
that defines what is allowed and blocks everything else), you can prevent malicious requests  
from probing your backend services for potential vulnerabilities . With API Connectivity Manager,  
you can upload the OpenAPI Specification and configure NGINX App Protect WAF to verify 
and allow requests that conform to the API contract .  

For additional information, see the API Connectivity Manager documentation .

https://docs.ansible.com/ansible/latest/index.html
https://docs.nginx.com/nginx-management-suite/acm/how-to/services/publish-api/
https://docs.nginx.com/nginx-management-suite/acm/how-to/devportals/publish-to-devportal/
https://www.nginx.com/products/nginx-app-protect/web-application-firewall/
https://docs.nginx.com/nginx-management-suite/acm/how-to/policies/advanced-security/


33CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 33

4. Manage APIs Across Multi-Cloud and  
Hybrid Architectures  

According to F5’s State of Application Strategy in 2022 report, 77% of enterprises operate 
applications across multiple clouds . The adoption of multi-cloud and hybrid architectures 
unlocks important benefits, like improved efficiency, reduced risk of outages, and avoidance 
of vendor lock-in . But these complex architectures also present unique challenges . 

The software and IT leaders surveyed by F5 named these as their top multi-cloud challenges: 

• Visibility (45% of respondents) 

• Security (44%) 

• Migrating apps (41%) 

• Optimizing performance (40%) 

Most cloud providers offer platform-native API gateways that provide a degree of visibility 
and security for managing and governing APIs . These tools don’t work so well when you 
need to govern and secure APIs across multiple clouds . Differences in the ways each vendor  
implements security or governance policies require custom updates for each platform, or  
even completely different user workflows . They also provide varying degrees of observability . 

For most teams operating in multi-cloud and hybrid environments, adopting a consistent 
data plane across all API gateway instances helps ensure that every API is managed, governed,  
and secured in a uniform way across the enterprise . This in turn frees teams to deploy and 
manage applications where it makes the most sense, whether in different data centers or 
with different cloud providers .

C O M M O N  M U LT I - C L O U D  A N D  
H Y B R I D  A P I  D E P L OY M E N T  PAT T E R N S 

You need a multi-cloud API strategy so you can implement a thoughtful approach to unifying  
your microservices – now distributed across multiple clouds – to ensure end-to-end 
connectivity . Two of the common scenarios for multi-cloud and hybrid deployments are: 

• Different services in multi-cloud/hybrid environments – You need to operate  
different applications and APIs in different locations, perhaps for cost efficiency or 
because different services are relevant to different groups of users . 

• Same services in multi-cloud/hybrid environments – You need to ensure high 
availability for the same applications deployed in different locations .

77% OF ENTERPRISES 
OPERATE APPLICATIONS 
ACROSS MULTIPLE CLOUDS

https://www.f5.com/go/report/2022-state-of-application-strategy-report


34CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 34

In the following tutorial, we show step-by-step how to use API Connectivity Manager, part 
of F5 NGINX Management Suite, in the second scenario: deploying the same services in 
multiple environments for high availability . This eliminates single points of failure in your 
multi-cloud or hybrid production environment – if a gateway instance fails, another gateway 
instance takes over and your customers don’t experience an outage . Services can remain 
available even if one of the clouds goes down completely . 

API Connectivity Manager is a cloud-native, platform-agnostic solution for deploying, 
managing, and securing APIs . From a single pane of glass, you can manage all your API 
operations for NGINX Plus API gateways and developer portals deployed across public 
cloud, on-premises, and edge environments . This gives your Platform Ops teams full 
visibility into API traffic and makes it easy to apply consistent governance and security 
policies for every environment .

T U T O R I A L :  E N A B L E  H I G H  AVA I L A B I L I T Y  F O R  A P I  G AT E WAYS 
I N  M U LT I - C L O U D  A N D  H Y B R I D  E N V I R O N M E N T S 

As mentioned in the previous section, in this tutorial we’re configuring API Connectivity 
Manager for high availability of services running in multiple deployment environments . 
Specifically, we’re deploying NGINX Plus as an API gateway routing traffic to two services,  
Service A and Service B, which are running in two public clouds, Google Cloud Platform 
(GCP) and Amazon Web Services (AWS) . (The setup applies equally to any mix of deployment  
environments, including Microsoft Azure and on-premises data centers .) 

Figure 16 depicts the topology used in the tutorial .

NGINX API
Gateway

Service A

Service B

Client

NGINX API
Gateway

Service A

Service B

Figure 16: API Connectivity Manager 
Enables Multi-Cloud Deployment of 
API Gateways and Services

https://www.nginx.com/products/nginx-management-suite/api-connectivity-manager/
https://www.nginx.com/products/nginx-management-suite/


35CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 35

Follow the steps in these sections to complete the tutorial: 

• Deploy NGINX Plus Instances as API Gateways 

• Set Up an Infrastructure Workspace 

• Create an Environment and API Gateway Clusters 

• Apply Global Policies 

Deploy NGINX Plus Instances as API Gateways  

Select the environments that make up your multi-cloud or hybrid infrastructure . For the 
tutorial we’ve chosen AWS and GCP and are installing one NGINX Plus instance in each 
cloud . In each environment, perform these steps on each data plane host that will act as  
an API gateway: 

1 . Install NGINX Plus on a supported operating system .  

2 . Install the NGINX JavaScript module (njs) .  

3 . Add the following directives in the main (top-level) _context in /etc/nginx/nginx.conf:

load_module modules/ngx_http_js_module.so;  
load_module modules/ngx_stream_js_module.so;

4 . Restart NGINX Plus, for example by running this command: 

$ nginx -s reload$ nginx -s reload

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-plus/
https://docs.nginx.com/nginx/technical-specs/
https://docs.nginx.com/nginx/admin-guide/dynamic-modules/nginscript/


36CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 36

Set Up an Infrastructure Workspace  

You can create multiple Infrastructure Workspaces (up to 10 at the time of writing) in 
API Connectivity Manager . With segregated Workspaces, you can apply policies and 
authentication/authorization requirements that are specific to different lines of business, 
teams of developers, external partners, clouds, and so on .  

Working in the API Connectivity Manager GUI, create a new Workspace: 

1 . Click Infrastructure in the left navigation column . 

2 . Click the  Create Workspace  button to create a new workspace, as shown in Figure 17 .

3 . In the Create Workspace drawer that opens, fill in the Name field (demo in Figure 18) .  
Optionally, fill in the Description field and the fields in the Workspace Contact 
Information section . The infrastructure admin (your Platform Ops team, for example) 
can use the contact information to provide updates about status or issues to the users 
of the Workspace . 

4 . Click the  Create  button .

Figure 17: Creating a New 
Infrastructure Workspace

Figure 18: Naming a New 
Infrastructure Workspace and  
Adding Contact Information 



37CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 37

Create an Environment and API Gateway Clusters 

In API Connectivity Manager, an Environment is a logical grouping of dedicated resources 
(such as API gateways or API developer portals) . You can create multiple Environments per 
Workspace (up to 25 as of this writing) . They usually correspond to different stages of app 
development and deployment such as coding, testing, and production, but can serve any 
purpose you want . 

Within an Environment, an API Gateway Cluster is a logical grouping of NGINX Plus 
instances acting as API gateways . With an Environment, you can create multiple API gateway  
clusters with the same hostname (for example, api.nginx.com) . The NGINX Plus instances  
in an API Gateway Cluster can also be located in more than one type of infrastructure  
(e .g ., in multiple clouds) .  

There are two ways to configure an Environment in API Connectivity Manager for active-
active high availability of API gateways: 

• With one API Gateway Cluster  

• With multiple API Gateway Clusters 

In the previous section, we deployed two NGINX Plus instances – one in AWS and the other 
in GCP . The tutorial uses the same instances in both types of Environment; in an actual 
deployment, the more common approach is either to deploy only one type of Environment 
or create additional NGINX Plus instances for the second Environment .  



38CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 38

Deploy an Environment with One API Gateway Cluster 

With one API Gateway Cluster, the same security policies apply to all API gateway instances, 
as shown in Figure 19 .

Workspace

API Gateway Cluster

Security Policies 

NGINX API
Gateway Instances

NGINX API
Gateway Instances

Environment

Create an Environment and API Gateway Cluster 

1 . Navigate to your Workspace and click the  Create Environment  button, as shown  
in Figure 20 . 

Figure 19: The Same Security Policies 
Apply to API Gateways Deployed in 
One API Gateway Cluster

Figure 20: Creating a New Environment  
in an Infrastructure Workspace



39CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 39

2 . In the Create Environment drawer that opens, fill in the Name field (prod in Figure 21)  
and optionally the Description field, and select the Environment Type (here we’re 
choosing Production) .

3 . In the API Gateway Clusters section, fill in the Name and Hostname fields (api-cluster 
and api.nginx.com in Figure 21) . 

4 . Click the  Create  button . 

The Environment Created panel opens to display the command you need to run on each 
NGINX Plus instance to assign it to the API Gateway Cluster . For convenience, we show the 
commands in Step 7 below .

Assign API Gateway Instances to an API Gateway Cluster 

Repeat on each NGINX Plus instance: 

5 . Use ssh to connect and log in to the instance . 

6 . If NGINX Agent is already running, stop it: 

$ systemctl stop nginx-agent 

Figure 21: Naming a New  
Environment and Assigning  
an API Gateway Cluster to It 



40CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 40

7 . Run the command of your choice (either curl or wget) to download and install the 
NGINX Agent package: 

• If you didn’t enable mTLS in Install and Configure API Connectivity Manager, add: 

 – The -k flag to the curl command  

 – The --no-check-certificate flag to the wget command 

• For <NMS_FQDN>, substitute the IP address or fully qualified domain name of your 
NGINX Management Suite server . 

• For <cluster_name>, substitute the name of the API Gateway Cluster (api-cluster  
in this tutorial) .

$ curl [-k] https://$ curl [-k] https://<NMS_FQDN><NMS_FQDN>/install/nginx-agent > install.sh  /install/nginx-agent > install.sh  
&& sudo sh -install.sh -g && sudo sh -install.sh -g <cluster_name><cluster_name> && sudo systemctl  && sudo systemctl 
start nginx-agent   start nginx-agent   
  
$ wget [--no-check-certificate] https://$ wget [--no-check-certificate] https://<NMS_FQDN><NMS_FQDN>/install//install/
nginx-agent --no-check-certificate -O install.sh && sudo  nginx-agent --no-check-certificate -O install.sh && sudo  
sh install.sh -g <clusterName> && sudo systemctl start  sh install.sh -g <clusterName> && sudo systemctl start  
nginx-agentnginx-agent



41CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 41

The NGINX Plus instances now appear in the Instances section of the Cluster window  
for api-cluster, as shown in Figure 22 .

8 . Proceed to Apply Global Policies . 

Deploy an Environment with Multiple API Gateway Clusters 

With multiple API Gateway Clusters, we can apply different security policies to the API gateway  
instances in different clouds, as shown in Figure 23 .

Workspace

API Gateway Cluster API Gateway Cluster

Security Policies Security Policies 

NGINX API
Gateway Instances

NGINX API
Gateway Instances

Environment

Figure 23: API Gateway Instances  
in Different Clouds

Figure 22: A Single API Gateway 
Cluster Groups NGINX Plus Instances 
Deployed in Multiple Clouds 



42CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 42

Create an Environment and API Gateway Cluster 

1 . Navigate to your Workspace and click the  Create Environment  button, as shown  
in Figure 24 .

2 . In the Create Environment drawer that opens, fill in the Name field (prod in Figure 25)  
and optionally the Description field, and select the Environment Type (here we’re 
choosing Production) .

3 . In the API Gateway Clusters section, fill in the Name and Hostname fields (in Figure 25, 
they are aws-cluster and api.nginx.com) .

4 . Click the  Create  button .

The Environment Created panel opens to display the command you need to run on 
each NGINX Plus instance to assign it to the API Gateway Cluster . For convenience,  
we show the commands in Step 10 below .

Figure 24: Creating a New 
Environment in an  
Infrastructure Workspace

Figure 25: Naming a New  
Environment and Assigning the  
First API Gateway Cluster to It 



43CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 43

5 . Navigate back to the Environment tab and click the  + Add  button in the upper right 
corner of the API Gateway Clusters section, as shown in Figure 26 .

6 . On the Create API Gateway Cluster panel, fill in the Name field with the second cluster 
name (gcp-cluster in Figure 27) and the Hostname field with the same hostname as for 
the first cluster (api.nginx.com) .

The two API Gateway Clusters now appear on the API Gateway Clusters for the production 
Environment, as shown in Figure 28 .

Assign API Gateway Instances to an API Gateway Cluster 

Repeat on each NGINX Plus instance:

7 . Use ssh to connect and log in to the instance .

8 . If NGINX Agent is already running, stop it:

$ systemctl stop nginx-agent

Figure 26: Adding Another API 
Gateway Cluster to an Environment 

Figure 27: Adding the Second API 
Gateway Cluster to an Environment

Figure 28: List of NGINX Plus Instances  
Deployed in Multiple Clouds and 
Separate API Gateway Clusters 



44CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 44

9 . Run the command of your choice (either curl or wget) to download and install the 
NGINX Agent package: 

• If you didn’t enable mTLS in Install and Configure API Connectivity Manager, add: 

 – The -k flag to the curl command  

 – The --no-check-certificate flag to the wget command

• For <NMS_FQDN>, substitute the IP address or fully qualified domain name of your 
NGINX Management Suite server . 

• For <cluster_name>, substitute the name of the appropriate API Gateway Cluster  
(in this tutorial, aws-cluster for the instance deployed in AWS and gcp-cluster for 
the instance deployed in GCP) . 

$ curl [-k] https://<NMS_FQDN>/install/nginx-agent > install.sh  $ curl [-k] https://<NMS_FQDN>/install/nginx-agent > install.sh  
&& sudo sh -install.sh -g <cluster_name> && sudo systemctl && sudo sh -install.sh -g <cluster_name> && sudo systemctl 
start nginx-agent   start nginx-agent   
  
$ wget [--no-check-certificate] https://<NMS_FQDN>/install/$ wget [--no-check-certificate] https://<NMS_FQDN>/install/
nginx-agent --no-check-certificate -O install.sh && sudo  nginx-agent --no-check-certificate -O install.sh && sudo  
sh install.sh -g <clusterName> && sudo systemctl start  sh install.sh -g <clusterName> && sudo systemctl start  
nginx-agentnginx-agent

The appropriate NGINX Plus instance now appears in the Instances section of the 
Cluster windows for aws-cluster (Figure 29) and gcp-cluster (Figure 30) . 

Figure 29: The First of Two API 
Gateway Clusters in an Environment 
That Spans Multiple Clouds



45CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 45

Apply Global Policies 

Now you can add global policies, which apply to all the NGINX Plus instances in an  
API Gateway Cluster . For example, to secure client access to your APIs you can apply  
the OpenID Connect Relying Party or TLS Inbound policy . To secure the connection  
between an API gateway and the backend service which exposes the API, apply the  
TLS Backend policy . For more information about TLS policies, see the API Connectivity 
Manager documentation .

1 . Navigate to the Cluster tab for the API Gateway where you want to apply a policy  
(api-cluster in Figure 31) . Click the Manage button that’s above the upper right corner 
of the Policies table .

Figure 30: The Second of Two API 
Gateway Clusters in an Environment 
That Spans Multiple Clouds

Figure 31: Managing Policies for an  
API Gateway Cluster 

https://docs.nginx.com/nginx-management-suite/acm/how-to/policies/tls-policies/
https://docs.nginx.com/nginx-management-suite/acm/how-to/policies/tls-policies/


46CHAPTER 4 – MANAGE APIs ACROSS MULTI-CLOUD AND HYBRID ARCHITECTURES 46

2 . Click Global Policies in the left navigation column, and then the … icon in the rightmost 
column of the row for the policy (TLS Backend in Figure 32) . Select + Add Policy from 
the drop-down menu . 

Figure 32: Adding a Global Policy to  
an API Gateway Cluster



474747CHAPTER 5 – PROTECT APIs ACROSS EVERY TOUCHPOINT 

5. Protect APIs Across Every Touchpoint 
In recent years, the proliferation of APIs has significantly changed the way enterprises operate .  
APIs enable different applications to communicate and exchange data with each other, 
allowing for more efficient and effective business processes and software development . 

However, with the increased use of APIs comes the risk of API sprawl, where APIs are 
created and deployed across distributed teams and architectures, often without proper 
oversight and management . This can create a new set of security risks for enterprises, as 
each API represents a potential entry point for attackers to gain unauthorized access to 
sensitive data and systems . 

T H E  R I S E  O F  A P I - F I R S T  S O F T WA R E  D E V E L O P M E N T 

One of the main drivers of API sprawl is the proliferation of microservices . A microservices 
architecture breaks a larger application into smaller, individual applications that communicate  
with each other via API . This breaks complex applications into discrete parts that can be  
managed by individual teams and scaled independently of each other to meet traffic demands . 

Microservices offer many advantages for developers, including increased flexibility and 
scalability . However, these benefits come with tradeoffs, including additional complexity . 
As a result, many enterprises adopt an API-first approach to building microservices . In this 
strategy, the design process for applications and services starts with an API contract that 
outlines how an API works, down to the format of requests and responses .

IN RECENT YEARS, THE 
PROLIFERATION OF APIs HAS 
SIGNIFICANTLY CHANGED THE 
WAY ENTERPRISES OPERATE

MICROSERVICES OFFER  
MANY ADVANTAGES  
FOR DEVELOPERS



484848CHAPTER 5 – PROTECT APIs ACROSS EVERY TOUCHPOINT 

T H E  AT TA C K  S U R FA C E  G R O WS  A S  A P I s  P R O L I F E R AT E 

The benefits of API-first software development can be easily undermined by a failure to 
take API security seriously, especially during design and deployment . At the most basic 
level, more APIs mean more attack surface . While APIs play a vital role in modern software 
development, they are simultaneously becoming easier to exploit .  

In 2018, Gartner predicted that APIs would become the most common attack vector for 
applications by 2022 . If anything, their prediction of that much delay was overly optimistic . 
High-profile API breaches at major companies that affected millions of users were already 
occurring and have only become more common: 

• In 2018, Facebook reported that at least 50 million users’ data was at risk after attackers  
exploited the company’s developer API to obtain personally identifiable information (PII) 
linked to users’ profile pages, including name, gender, and hometown . 

• In 2019, LinkedIn reported that a hacker used data scraping techniques by exploiting APIs  
to collect over 700 million users’ information, which was posted for sale on the dark web . 

• In 2021, an API maintained by Peloton allowed a malicious actor to request PII, including 
age, gender, city, weight, and birthdate . 

• In 2022, Twitter addressed an API breach that exposed data from 5 .4 million user accounts,  
including phone numbers and email addresses . 

• In 2023, T-Mobile reported that an API breach had resulted in the theft of data for 37 million  
customers, including names, emails, addresses, phone numbers, dates of birth, and more . 

The breadth and variety of these attacks reveals the challenges faced by security and 
engineering leaders . Some attacks exploit APIs that were incorrectly exposed to the internet .  
Others use API keys or other authentication methods that were incorrectly exposed in code 
repositories . Or attackers get access to internal environments through VPN exploits and  
use internal APIs to exfiltrate data . 

THE BENEFITS OF API-FIRST 
SOFTWARE DEVELOPMENT 
CAN BE EASILY UNDERMINED 
BY A FAILURE TO TAKE API 
SECURITY SERIOUSLY

https://www.gartner.com/account/signin?method=initialize&TARGET=http%3A%2F%2Fwww.gartner.com%2Fdocument%2F3830086
https://techcrunch.com/2018/09/28/everything-you-need-to-know-about-facebooks-data-breach-affecting-50m-users/
https://threatpost.com/data-700m-linkedin-users-cyber-underground/167362/
https://techcrunch.com/2021/05/05/peloton-bug-account-data-leak/
https://venturebeat.com/security/twitter-breach-api-attack/
https://www.cnn.com/2023/01/19/tech/tmobile-hack/index.html
https://www.cnn.com/2023/01/19/tech/tmobile-hack/index.html


494949CHAPTER 5 – PROTECT APIs ACROSS EVERY TOUCHPOINT 

T H WA R T I N G  A P I  AT TA C KS  R E Q U I R E S  
T H E  R I G H T  S T R AT E GY  A N D  T O O L S 

The most common way to protect against API threats is to combine traditional web application  
security strategies with modern API security techniques . Traditional strategies often fall short  
in the face of today’s varied API threats . Modern techniques like automated API discovery 
and API contrast testing attempt to close these gaps .

It is critical for enterprises to shield right (implement global controls and security policies 
to protect deployed apps and APIs) and shift left (build security into code to eliminate 
vulnerabilities before apps and APIs go into production) . Neither strategy can provide 
comprehensive API security on its own, so the key to preventing breaches is a holistic 
approach that spans three categories of API security practices: 

• API security posture management – Provides visibility into the security state of a 
collection of APIs, including types of data exposed and request methods 

• API security testing – Evaluates the security of an API across key points in its lifecycle 
to identify potential vulnerabilities 

• API runtime protection – Detects and prevents malicious requests from reaching APIs 
during operation 

Shift Left Shield Right

End-to-End API Security

Runtime Protection
• Access Control
• Data Encryption
• Application Protection

Posture Management
• Automated API Discovery
• API Characterization
• API Cataloging

Security Testing
• API Contract Testing
• Application Security 

Testing (SAST/DAST)

By combining the right strategy with the right tools, organizations can better protect their 
APIs from attacks and ensure the security of their software systems . Let’s look at the 
important functionality and tools that platform engineering leaders need to implement to 
protect APIs across their lifecycle . 

Figure 33: Essential API  
Security Requirements

TRADITIONAL STRATEGIES 
OFTEN FALL SHORT IN THE 
FACE OF TODAY’S VARIED  
API THREATS



505050CHAPTER 5 – PROTECT APIs ACROSS EVERY TOUCHPOINT 

What Is API Security Posture Management? 

API security posture management creates visibility into the number, types, locations, and 
data exposed by your APIs . This information helps you understand the risks associated with 
each API so you can take appropriate actions to protect it .

Key functionality: 

• Automated API discovery – Automatic and continuous API discovery for comprehensive  
visibility into APIs deployed in an environment 

• API characterization – Identify and categorize APIs by protocol or architecture (REST, 
GraphQL, SOAP, etc .) and map sensitive data flows to understand your risk exposure 

• API cataloging – Maintain a complete list of APIs to encourage software teams to reuse  
existing APIs, and to help SecOps teams build a complete view of your security posture

Representative technologies: 

• Web application and API protection (WAAP) – Leverages a privileged global position 
in the API infrastructure to analyze traffic entering and leaving environments, identify 
APIs, and build a view of your risk exposure 

• Inline or agent-based discovery – Attaches an agent to existing API gateways, load 
balancers, or Kubernetes Ingress controllers to mirror and analyze API traffic 

• Out-of-band or agentless discovery – Uses traffic mirroring or exported logs and 
metrics to analyze API traffic; usually offers less visibility into APIs and threats than 
other technologies 

• Domain crawlers – API security providers may offer crawlers that probe your domain 
for exposed API endpoints that are allowing traffic to bypass your API gateways and 
load balancers where security policies can be enforced 

It’s important to keep in mind that no technology can reliably find every API in your 
architecture . Most discovery techniques rely on visibility provided by existing load balancers,  
API gateways, and Ingress controllers, and are not likely to catch misconfigurations that 
bypass these architectural components . 

Ultimately, code review and following API-first best practices offers more effective long-term  
prevention . But automated API discovery tools are still useful for rapidly building a view of your  
security posture and for catching APIs that might otherwise go unmanaged and unsecured .

API SECURITY  
POSTURE MANAGEMENT 
CREATES VISIBILITY

https://www.f5.com/glossary/web-app-and-api-protection-waap


515151CHAPTER 5 – PROTECT APIs ACROSS EVERY TOUCHPOINT 

What Is API Security Testing? 

While API security posture management is concerned with enterprise-wide security, API  
security testing is very much about individual APIs . At its most basic, API security testing helps  
identify and prevent vulnerabilities and their associated risks by testing the API runtime – the  
application running behind the API . It helps ensure that basic security requirements have  
been met, including conditions for authentication, authorization, rate limiting, and encryption . 

Key functionality: 

• API contract testing – Uses an API’s OpenAPI Specification to verify that it is performing  
as designed, by comparing client requests and server responses, and an “inside out” 
approach to discover whether APIs are vulnerable prior to deployment

• Dynamic application security testing (DAST) – Simulates attacks against an API runtime  
to find vulnerabilities, evaluating the API from the “outside in” like a malicious user

Representative technologies: 

• API contract testing software – Specialized tools for running tests that segment  
API requests and responses to verify that client and server behavior complies with  
the API contract 

• Application security testing (SAST/DAST) – Tools that analyze and test applications, 
including APIs, by simulating attacks 

There are both open source contract-testing tools and commercial products from dedicated 
API security vendors . The application security testing (AST) market has existed for decades, 
and increasingly many vendors offer dedicated scanning and testing tools for APIs .

What Is API Runtime Protection? 

API runtime protection refers to securing APIs as they operate and manage requests .  
It prioritizes building security into the platform infrastructure as well as the code of the  
APIs themselves . The objective is to identify and prevent malicious API requests that 
emerge after deployment . 

Key functionality: 

• Access control – Enforce authentication (AuthN) and authorization (AuthZ) policies 

• Data encryption – Encrypt and protect communications across the network 

• Application protection – Protect API runtimes from malicious API requests and attacks 

• Real-time monitoring – Visualize, trace, and mitigate attacks across API infrastructure 

API SECURITY TESTING  
IS VERY MUCH ABOUT 
INDIVIDUAL APIs

API RUNTIME PROTECTION 
REFERS TO SECURING  
APIs AS THEY OPERATE  
AND MANAGE REQUESTS



525252CHAPTER 5 – PROTECT APIs ACROSS EVERY TOUCHPOINT 

Representative technologies: 

• API gateway – Applies and enforces security policies, including authentication, 
authorization, rate limiting, access control lists, and encryption 

• Web application firewall (WAF) – Protects APIs and applications against sophisticated 
Layer 7 attacks by actively monitoring and filtering traffic based on attack signatures 

• Identity provider (IdP) – Service that stores and verifies user identity, and typically 
works with single sign-on (SSO) providers to authenticate users 

Not all API gateways and WAFs/WAAPs are created equal . Some services, particularly 
the native solutions available on cloud and other platforms, lack the global visibility and 
standardization required in multi-cloud and hybrid architectures .

A P I  S E C U R I T Y  B E S T  P R A C T I C E S 

Given the importance of securing APIs, it is essential to approach API security in an 
organized way . Platform engineering and security leaders must work together to address 
security requirements across the API lifecycle . As we explored earlier, this roughly aligns to 
three main areas of practice: API security posture management, API security testing, and 
API runtime protection . In other words, you need to focus on knowing how many APIs you 
have, how to test them for errors, and how to build security into your code . 

The following best practices are based on well-established security controls for APIs, 
whether you intend to expose them publicly, to a limited number of partners, or only to 
internal teams: 

• Inventory and manage your APIs. Automated API discovery tools can help you build an  
initial view of every API, whether public or private . Meet with engineering leaders to  
determine if other APIs may exist in your infrastructure that did not show up in automated  
scans . Ensure every API has a functional owner who is responsible for managing it . 

• Implement API security testing throughout the API lifecycle. Verify that APIs are built  
and deployed with appropriate security policies, and identify potential misconfigurations . 

• Enforce authentication and authorization. Poor or non-existent authentication and 
authorization is one of the most common vulnerabilities for APIs . Since APIs provide an  
entry point into an organization’s systems and data, it’s critical to enforce access control . 

• Practice the principle of least privilege. Limit which users, groups, and roles can 
access specific API resources and grant the minimum access necessary to complete 
a task . Consider using API gateways for each team or line of business to customize 
security and compliance policies for their unique requirements . 

IT IS ESSENTIAL TO 
APPROACH API SECURITY  
IN AN ORGANIZED WAY



535353CHAPTER 5 – PROTECT APIs ACROSS EVERY TOUCHPOINT 

• Remove information that’s not meant to be shared. Even though APIs are developer 
tools, they often contain information that must not be exposed or made publicly available,  
like personally identifiable information (PII) that includes contact or payment information .  
Ensure each API only returns as much information as necessary, and obfuscate responses  
that contain confidential data . 

• Rate limit API requests. Rate limiting is another form of access control and limits the 
number of requests the API gateway passes to the API during a defined period of time, 
sometimes with different limits for different clients . This ensures API resources are not 
overwhelmed by requests and provides additional protection against DoS attacks . 

• Validate requests and responses. Apply positive security by using schema validation 
to match API requests against the API contract . If validation fails, the API call is blocked, 
protecting the API runtime from malicious requests or payloads . 

• Monitor API traffic for anomalies. Monitor API traffic and flag anomalies in real time 
to identify when an attack might be underway . A mix of traffic metrics, logs, and other 
sources like a WAF is typically used to monitor and inspect API requests and responses . 

C O N C L U S I O N 

Like all cybersecurity, API security is an ongoing process that requires collaboration with many  
stakeholders, including network engineers, security operations leaders, platform engineering  
leaders, and software development engineers . The good news is that it’s no great mystery 
how to secure APIs . Most organizations already have measures in place to combat well-known  
attacks like cross-site scripting (XXS), injection, distributed denial-of-service (DDoS), and 
others that can target APIs . And many of the best practices described above are likely quite 
familiar to seasoned security professionals . No matter how many APIs your organization 
operates, your goal is to establish solid API security policies and manage them proactively 
over time .

API SECURITY IS AN  
ONGOING PROCESS THAT 
REQUIRES COLLABORATION 
WITH MANY STAKEHOLDERS



54CHAPTER 6 – IDENTIFY AND TRACK IMPORTANT API METRICS 54

6. Identify and Track Important API Metrics 
As companies adopt API-first design practices to build modern applications, measuring the 
operational performance and value of those APIs becomes a top priority . Establishing a 
framework that clearly defines and connects API metrics with key performance indicators 
(KPIs) is one of the most important steps to ensure a successful API strategy .  

Typically, KPIs are tied to specific goals . They have a defined time frame and are aligned 
to the outcomes your API strategy needs to deliver . API metrics, in contrast, are significant 
data points . Not every metric is a KPI, but every KPI begins as a metric .  

So, how do you start? First, you need to be clear – at the outset – about the goal of your API 
strategy . Then choose the metrics that align with that goal . Remember that different teams 
might need to measure and track different metrics depending on what is important to them 
and what is essential for the business .  

Broadly, there are three categories of API metrics that companies can track, each answering 
a different question: 

• Operational metrics – Are APIs delivering the stability, reliability, and performance  
you need? 

• Adoption metrics – Are developers adopting and using your APIs? 

• Product metrics – How are APIs supporting your business objectives?  

Imagine these overarching metrics as a pyramid . At the bottom, operational metrics measure 
the tactical performance of individual APIs and the infrastructure supporting them . At the top, 
product metrics measure the business value created by your APIs . The two are connected 
by adoption metrics, which track the growth of the API program with end users (developers) . 
Generally, product metrics and adoption metrics align to the business outcomes you need to 
measure, while operational metrics align with the technical standards you need to maintain .  

Next, we detail specific metrics that are critical to measure, how they enable infrastructure and 
application teams, and ways these metrics connect with KPIs .

O P E R AT I O N A L  M E T R I C S 

When you are just getting started, operational metrics are often the first thing to measure . 
They are tactical and provide insights into how APIs are functioning . Operational metrics are 
not usually KPIs themselves . Instead, they help you measure the quality and performance of  
the software your teams are building . They can provide early indicators of emerging problems,  
or help you drill down and discover issues that might be impacting your critical KPIs . 

The operational metrics you track vary by team and responsibility .

MEASURING THE  
OPERATIONAL PERFORMANCE 
AND VALUE OF APIs  
BECOMES A TOP PRIORITY

OPERATIONAL METRICS  
ARE OFTEN THE FIRST  
THING TO MEASURE



55CHAPTER 6 – IDENTIFY AND TRACK IMPORTANT API METRICS 55

Infrastructure Teams 

Platform Ops is the team responsible for maintaining, connecting, and securing the collection  
of infrastructure and technologies used by different teams to deliver applications . For API 
programs, this often includes API gateways and API developer portals .  

Key metrics for infrastructure teams like Platform Ops include: 

• Uptime – Even as one of the most basic metrics, uptime is the gold standard for measuring  
the availability of a service . This is often tied to a service-level agreement (SLA) . 

• CPU and memory usage – Tracking resource utilization at the API gateway is critical to  
identifying when you might need to scale out your instances . It also acts as an early warning  
when something is starting to break or errors are causing CPU and memory usage to spike . 

• Total pass and error rates – Measuring how often APIs trigger non-200 status codes helps  
you understand how error-prone your APIs may be . This aggregate measure provides 
information about the overall quality of the APIs your teams are putting into production .

Application Teams 

Application teams, made up of API developers and service owners, are responsible for 
building and operating individual services or applications . These might be used as part of  
a larger product, to integrate with a partner, or when delivering an API as a Service (APIaaS) 
to developers .  

The following metrics are important for application teams to measure: 

• Requests per second – This is a performance metric that indicates how often your 
backend application server is being accessed . You typically want a lower number to 
improve efficiency and create ensure the best experience for API users . 

• Average and maximum latency – Tracking the average time it takes your API to receive 
a request and return a response is crucial . A single slow API can negatively impact the 
user experience and therefore the business . 

• Errors per minute – API calls inevitably fail at some point . It’s not a matter of if, but 
when . Monitoring errors and seeing when they start to spike means it’s time to plan a 
course of action to restore service .

Adoption Metrics 

To understand how developers are interacting with your APIs, it is essential for an API-first 
business to look beyond engineering metrics . You also need to measure and monitor the API  
developer experience to ensure developers are adopting and getting value from your APIs .  

IT IS ESSENTIAL FOR  
AN API-FIRST BUSINESS  
TO LOOK BEYOND  
ENGINEERING METRICS

https://www.nginx.com/resources/glossary/what-is-platform-ops/


56CHAPTER 6 – IDENTIFY AND TRACK IMPORTANT API METRICS 56

A few examples of adoption metrics include: 

• Unique API consumers – Often time-bound into monthly users, this metric measures 
how many developers are adopting and using your APIs . Ideally this metric grows over 
time as more developers integrate your API into their applications . 

• API usage growth – This metric also measures API adoption, and is often the preferred 
metric for doing so . Ideally, API traffic grows monthly the number of applications and 
developers using the API increases . 

• Time to first call – This metric records how long it takes a developer to create an 
account, generate API credentials, and run the first API call . Enabling developers to 
get up and running as fast as possible is a high priority, making this metric the most 
important in measuring the overall API developer experience . 

Note: You need to devote at least one of your KPIs to tracking the adoption of your APIs . 
This helps calculate the overall growth of your API program . For example, you might set a 
KPI to increase the number of developers who have created an ongoing integration or app 
using your API .

Product Metrics 

API product metrics play a major role in understanding the value of an API . Although only a 
small subset of APIs may directly contribute to revenue, every API needs to provide value to 
the business . 

Key product metrics to measure include: 

• Direct and indirect revenue – These metrics target the different ways APIs contribute 
to revenue . While some APIs are directly monetized, others support integrations 
with business partners . Tracking this indirect value, like adoption of your APIs, helps 
developers build revenue-generating apps for partners . 

• Applications per API – APIs need to be reusable . This metric measures how many 
applications integrate with an API, revealing which APIs provide the most value . 

• Number of partners – APIs often enable business relationships and enable deeper 
integrations into an ecosystem of applications . Tracking the number of partners using 
your APIs can help demonstrate the indirect value provided by your API . 

Note: These product metrics align closely with business impact, and you might choose to 
turn some into KPIs depending on your business goals . For example, if one goal of your API 
strategy is to integrate your application deeper into an ecosystem of tools used by your 
customers, you might want to track both the number of partners integrating with your API, 
and any indirect revenue generated through those integrations .  

EVERY API NEEDS TO 
PROVIDE VALUE TO  
THE BUSINESS



C O N C L U S I O N 

Aligning API metrics and business KPIs is one of the principal ways to make data-driven 
decisions and ensure your API strategy delivers the value your organization requires . 
And not only that – gaining visibility into your APIs can also empower infrastructure and 
application teams to measure the operational metrics that matter most to them .

©2023 F5, Inc . All rights reserved . F5 and the F5 logo, NGINX and the NGINX logo, F5 NGINX Agent, F5 NGINX JavaScript, F5 NGINX Management Suite, 
F5 NGINX Management Suite API Connectivity Manager, and F5 NGINX Plus are trademarks of F5 in the U .S . and in certain other countries . Other F5 
trademarks are identified at f5 .com . Any other products, services, or company names referenced herein may be trademarks of their respective owners with 
no endorsement or affiliation, expressed or implied, claimed by F5 .

https://www.nginx.com
http://f5.com

	Introduction: API Sprawl
	API Adoption Continues to Increase
	Factors Driving API Sprawl 
	Consequences of API Sprawl 
	How Can Platform Engineering Leaders Respond? 
	Prerequisite: Install and Configure API Connectivity Manager 



	1.	Create a Single Source of Truth 
for Your APIs
	Build an Inventory of Your APIs 
	Streamline API Discovery with an 
API Developer Portal 
	Tutorial: Create a Developer Portal with NGINX 
	Automatically Generate API Documentation 
	Ensure Proper Versioning 
	Generate API Credentials 
	Try Out APIs on the Developer Portal 




	2.	Put an API Governance Plan in Place 

	The Importance of API Governance 
	Why Do You Need API Governance? 
	What Types of APIs Do You Need to Govern? 


	Common API Governance Models 
	Implement Adaptive Governance to 
Empower Developers 
	Tutorial: Govern Your APIs with NGINX 
	Provide Shared Infrastructure 
	Give Teams Agency 
	Balance Global Policies and Local Control 


	3.	Adopt an API-First Approach to 
Building Microservices  

	What Is API-First? 
	The Value of API-First for Organizations 
	The Importance of Adopting a Common 
API Specification 
	The OpenAPI Specification 
	How to Use NGINX for API-First 
Software Development 
	Publish APIs to the API Gateway 
	Generate API Documentation for the Developer Portal 
	Apply Positive Security to Protect API Endpoints 




	4.	Manage APIs Across Multi-Cloud and 
Hybrid Architectures  
	Common Multi-Cloud and 
Hybrid API Deployment Patterns 
	Tutorial: Enable High Availability for API Gateways in Multi-Cloud and Hybrid Environments 
	Deploy NGINX Plus Instances as API Gateways  
	Set Up an Infrastructure Workspace  
	Create an Environment and API Gateway Clusters 
	Deploy an Environment with One API Gateway Cluster 


	Create an Environment and API Gateway Cluster 
	Assign API Gateway Instances to an API Gateway Cluster 
	Deploy an Environment with Multiple API Gateway Clusters 

	Create an Environment and API Gateway Cluster 
	Assign API Gateway Instances to an API Gateway Cluster 
	Apply Global Policies 



	5.	Protect APIs Across Every Touchpoint 
	The Rise of API-First Software Development 
	The Attack Surface Grows as APIs Proliferate 
	Thwarting API Attacks Requires 
the Right Strategy and Tools 
	What Is API Security Posture Management? 
	What Is API Security Testing? 
	What Is API Runtime Protection? 
	API Security Best Practices 
	Conclusion 




	6.	Identify and Track Important API Metrics 
	Operational Metrics 
	Infrastructure Teams 
	Application Teams 
	Adoption Metrics 
	Product Metrics 





	Conclusion 


