

NGINX Plus on AWS

Scott Ward

October 2014

Amazon Web Services - NGINX Plus on AWS October 2014

Abstract
Amazon Web Services (AWS) provides a reliable, scalable, secure, and highly
performing infrastructure for the most demanding web applications. AWS offers
infrastructure that matches IT costs with customer traffic patterns in real time. In turn,
NGINX Plus brings end-to-end performance and scalability to modern web architectures
built on top of AWS, while alleviating the burden of heavy lifting of HTTP for application
developers and system engineers. NGINX Plus is built on top of the open source NGINX
web server, and offers additional features around load balancing, monitoring, proxy
routing, and advanced management of the NGINX configuration.

This whitepaper provides specific technical guidance on how to deploy and configure
NGINX Plus on AWS. Additionally, we outline key integrations and configurations that
are unique to AWS products and allow flexibility around using the NGINX Plus product to
best meet your needs.

Introduction
Organizations need to ensure that they can keep up with rapid changes that can be
required for their global computing infrastructures. Additionally, they need to find ways to
deploy and deliver applications from distributed, cloud-based services with confidence
that these applications can deliver a consistent and reliable level of service, withstanding
huge and unpredictable spikes in traffic without missing a beat. The compute resources
offered by AWS meet this need by providing a global computing infrastructure as well as
services that simplify managing that infrastructure.

Based on the NGINX open source web server software, NGINX Plus is a high
performance, high concurrency HTTP reverse proxy, load balancer, edge cache and
origin server—all in one compact, software-only package. NGINX Plus is architected for
multiple advantages:

Scalability and Performance—NGINX Plus scales with the resources of the Amazon
EC2 instance that it is deployed on: CPU resources for SSL, memory and disk for
caching, and network for bandwidth. There are no built-in limits on its performance.

Capability—NGINX Plus offers features such as reverse proxy with load balancing,
application request routing, content acceleration, and caching. Additionally, NGINX Plus
offers many opportunities to integrate with existing AWS products.

Predictability—NGINX Plus was built to minimize the use of CPU and memory
resources. This design allows NGINX Plus to run effectively on Amazon EC2 instances
with a small footprint and low overall infrastructure costs.

Usability—NGINX Plus setup is flexible, logical, and scalable. Readability and
manageability of NGINX Plus configuration saves time and reduces errors.

Automation—NGINX Plus configuration can be automated with tools like Puppet and
Chef.

Page 2 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

Monitoring and Logging—NGINX Plus offers activity monitoring with performance
metrics exposed via JSON. NGINX Plus also offers standard logging capabilities and
remote logging support via the industry-standard syslog protocol.

AWS Services Overview
Throughout this whitepaper, there are references to AWS services and their usage with
NGINX Plus. This section provides an overview of each service.

Amazon EC2
Amazon Elastic Compute Cloud (Amazon EC2) provides resizable compute capacity in
the cloud. When drawing a comparison between traditional infrastructures, Amazon EC2
represents the servers that run your applications, web servers, and databases.

Security Groups

Amazon EC2 security groups act as a firewall governing network traffic in and out of
EC2 instances. AWS customers have full access to define and assign security groups
that are appropriate for their EC2 instances. By default, EC2 instances are launched with
security groups that are in an allow nothing state for inbound traffic. Changes to allow
the appropriate inbound traffic to the EC2 instance must be made by the customer.

Elastic IP Address

An Elastic IP address is a static IP address designed for dynamic cloud computing.
Elastic IP addresses can be assigned to an individual EC2 instance and then re-mapped
to another EC2 instance to replace the original instance in case of a failure or a
migration. Elastic IP addresses can only be assigned to one EC2 instance at a time.

Auto Scaling
Auto Scaling allows you to scale your Amazon EC2 capacity up or down automatically,
according to conditions that you define. Auto Scaling allows the number of EC2
instances in use to seamlessly increase during demand spikes to maintain performance,
and decrease automatically during demand lulls to minimize costs.

Amazon Elastic Block Storage
Amazon Elastic Block Store (Amazon EBS) provides persistent block-level storage
volumes for use with EC2 instances in the AWS cloud.

AWS Identity and Access Management
AWS Identity and Access Management (IAM) enables you to control access to AWS
services and resources securely. Using IAM, you can create and manage AWS users
and groups and use permissions to allow and deny their access to AWS resources.

Amazon CloudWatch
Amazon CloudWatch is a monitoring service for AWS cloud resources and applications
that run on AWS. CloudWatch provides functionality to view graphs and statistics for the
metrics that are monitored. These metrics can be viewed individually or combined with
other local metrics, or metrics from other instances, to provide a complete picture.

Page 3 of 31

http://aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
http://aws.amazon.com/autoscaling/?nc1=h_l2_c
http://aws.amazon.com/ebs/?nc1=h_l2_sc
http://aws.amazon.com/iam/
http://aws.amazon.com/cloudwatch/

Amazon Web Services - NGINX Plus on AWS October 2014

Additionally, CloudWatch can create alarms, based on metrics, which send notifications
or take additional actions such as initiating Auto Scaling actions.

Elastic Load Balancing
Elastic Load Balancing automatically distributes incoming application traffic across
multiple EC2 instances in the cloud. It enables you to achieve greater levels of fault
tolerance in your applications, seamlessly providing the required amount of load
balancing capacity needed to distribute application traffic.

AWS Command Line Interface
The AWS Command Line Interface (AWS CLI) is a unified tool to manage your AWS
services. With just one tool to download and configure, you can control multiple AWS
services from the command line and automate them through scripts.

Amazon Route 53
Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web
service. Amazon Route 53 effectively connects user requests to infrastructure running in
AWS, such as EC2 instances, Elastic Load Balancing load balancers, or Amazon S3
buckets, and can also be used to route users to infrastructure outside of AWS.

Where NGINX Plus Fits
The Web Application Hosting in the AWS Cloud: Best Practices whitepaper
highlights the following components of a classic web application architecture to leverage
AWS infrastructure:

App Server Load Balancer. Software load balancer on EC2 instances to spread traffic
over the app server cluster.

Auto Scaling Web Tier. Group of EC2 instances handling HTTP requests.

Auto Scaling App Tier. Group of EC2 instances running the actual app. Instances
belong to the Auto Scaling group.

Amazon ElastiCache. Provides caching services for the app, removing the load from
the database tier.

Streaming Media Server. Provides capabilities for streaming media applications,
including progressive downloads, pseudo-streaming with MP4 and FLV, and adaptive
streaming for video-on-demand (VOD) applications.

NGINX Plus provides quite a few essential web infrastructure tools that fit into the
above-mentioned applications. Different features in NGINX Plus can be combined and
configured for simultaneous use on the same instance. Alternatively, NGINX Plus can be
set up in accordance to the functionality of a particular tier, without compromising either
performance or scalability.

Page 4 of 31

http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/cli/
http://aws.amazon.com/route53/
http://media.amazonwebservices.com/AWS_Web_Hosting_Best_Practices.pdf

Amazon Web Services - NGINX Plus on AWS October 2014

Using NGINX Plus on Amazon EC2
Basic Installation
With AWS, you can create and launch one or more EC2 instances running NGINX Plus.

The recommended and often easiest way to get started is to use the NGINX Plus AMIs,
which are available in the AWS Marketplace. These AMIs provide the latest version of
NGINX Plus for use with AWS, pre-packaged software for NGINX Plus configurations,
and helper scripts for installing and configuring typical development environments with
NGINX Plus.

To get started, visit the AWS Marketplace and search on “NGINX Inc”. Select the NGINX
Plus AMI that you want to use. When prompted, sign in to your AWS account.

On the AMI details page, review the details about the AMI. Click Continue when you are
ready to start the process of creating an EC2 instance and installing NGINX Plus.

www.example.com

Backups
Amazon S3
used for
storing Static
Object and
Backups

Elastic Load Balancer

S3 Bucket

Route 53 Hosted Zone

Region

Standby

S

Availability Zone #1

Load Balancer

EC2 Instance: Web Server

Auto Scaling Group: Web Tier

EC2 Instance: App Server

Auto Scaling Group: App Tier

RDS Master

Availability Zone #1

Load Balancer

EC2 Instance: Web Server

Auto Scaling Group: Web Tier

EC2 Instance: App Server

Auto Scaling Group: App Tier

media.example.com

ElastiCache

Edge Caching
High Volume
Content is edge
cached using
CloudFront

Dynamic

Static

Page 5 of 31

https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace

Amazon Web Services - NGINX Plus on AWS October 2014

One-Click Launch from the AWS Marketplace

If you prefer not to use the Amazon EC2 console to launch your instance, you can
configure all the details about your instance on the One-Click launch tab from the AMI
details page. This option allows you to launch only one EC2 instance at a time.

1. Select the One-Click launch tab from the AMI details page.
2. In the Region section, select the AWS region where you want to launch your NGINX

Plus instance.
3. In the Amazon EC2 Instance Type section, choose your preferred instance type.
4. Choose the VPC that your instance will be created in.
5. Review the proposed security group settings and either choose from your existing

security groups or accept the new proposed security group included in the AMI
definition.

6. In the Key Pair section, choose a key pair to associate with the instance. This key is
used to connect to your instance over Secure Shell (SSH).

7. Click Accept Terms & launch with 1-click to create your new instance.

Launch with the Amazon EC2 Console

If you prefer to use the Amazon EC2 console to launch your instance, click the Launch
with EC2 Console tab from the AMI details page. This option allows you to launch
multiple EC2 instances.

1. Select the Launch with EC2 Console tab from the AMI details page.
2. Click Accept Terms to allow access to the Amazon EC2 console.
3. Choose your instance type.
4. Configure the instance details including the number of instances, VPC, and

monitoring.
5. Add any additional storage.
6. Tag your instance.
7. Configure the appropriate security group for your instance.
8. Launch your instance.

Connect to and Verify Your Instance

1. After the instance has been created, you are presented with the deployment details.
Take note of the instance ID.

2. Sign into the AWS Management Console, select Amazon EC2, and click the ID for
the instance just created. In the instance detail tab, make a note of the Public DNS
hostname. You need this to log in to your NGINX Plus instance.

3. Connect to the EC2 instance via SSH. For more information about how to connect to
an EC2 instance, see Connect to an Instance in the Amazon EC2 User Guide for
Linux.

4. Upon new instance launch, NGINX Plus starts automatically and is configured to
serve a default index.html page. You can verify this configuration by placing the
public DNS of your EC2 instance into a browser and confirming that the default
NGINX page is returned. On your EC2 instance, you can also check the status of
NGINX Plus by running the following command:

$ /etc/init.d/nginx status

Page 6 of 31

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html

Amazon Web Services - NGINX Plus on AWS October 2014

NGINX Configuration Files
This whitepaper references multiple configuration options for NGINX Plus along with
configuration snippets. Unless otherwise referenced, the configuration file referenced in
this whitepaper is /etc/nginx/nginx.conf. The nginx.conf file is the base configuration
file for your NGINX instance. Through the include statement, which is a pointer to files in
other directories, the nginx.conf file may reference additional configuration files which
may be relevant to your configuration needs.

For more information about how to configure NGINX Plus, see the Beginners Guide
section on NGINX.org.

Performance
When configuring infrastructure to support your application or service, it is important to
take the time to plan for how your infrastructure will perform under expected and un-
expected loads. Planning for performance involves not only picking the correct
infrastructure but also configuring your infrastructure to flex up or down when needed,
ensuring that your instances are configured for performance, and that you use tools that
allow you to test how your infrastructure performs under load.

Amazon EC2 Instance Sizing
When it comes to sizing your EC2 instance for NGINX, it’s not possible to give
prescriptive rules on sizing for a user’s application. Every application, NGINX Plus
configuration, and profile of user traffic is different.

Many users first deploy NGINX Plus on small instances for simple development
environments. These small development environments are well served by the Amazon
EC2 T2 instance class. When it comes to the first production deployment, many users
select general-purpose EC2 instances such as m3.medium or m3.large. If traffic levels
grow, users have the option of scaling vertically with a larger EC2 instance or
horizontally using Auto Scaling.

Some traffic profiles have particular requirements. If you’re terminating SSL connections,
then CPU resources are a must, and NGINX scales linearly in performance with the
CPU capacity of the EC2 instance that you deploy it on. Similarly, if your traffic is
dominated by small requests and WebSockets requests, CPU is a key resource.

If you are caching content on an EC2 instance, then disk I/O is a bottleneck. NGINX
provides hints to the operating system page cache to keep hot content in memory, but
disk writes and cache misses affect performance. When you are looking to use NGINX
for content caching, select EC2 instance types that offer SSD instance storage and get
the fastest possible access to information that must be retrieved from disk. In regards to
the size of the cache you can operate, this is dictated by the memory capacity of the
EC2 instance that is chosen to host the cache.

If your workload is bandwidth-heavy—for example, if you are serving video files or large
downloads—then network bandwidth may be your limiting resource and horizontal
scaling may be the best approach when you reach the limits of individual EC2 instances.

Page 7 of 31

http://nginx.org/en/docs/beginners_guide.html

Amazon Web Services - NGINX Plus on AWS October 2014

To confirm that you have the correct EC2 instance size, we recommended that you test
your NGINX configuration for your expected and un-expected traffic patterns. The
Performance Baselines section of this whitepaper discusses options for testing your
configuration. After you are running the desired infrastructure configuration in production,
it is also important to continue to monitor the performance of your infrastructure to
confirm that it is performing as needed. CloudWatch provides a good option for being
able to monitor your infrastructure and confirm that it is performing well. The monitoring
section of this whitepaper dives deeper into using CloudWatch for monitoring
performance of your NGINX applications within AWS.

A great benefit of running on AWS is that you can start instances, test them for
performance, resize to a new instance if you determine that the instance size is not
correct for your use, and then terminate the original instances. Depending on the options
you chose, you would not have to continue paying for an instance after it is terminated.
This approach allows you to try out a variety of instances, so you can find the right fit, at
a low initial investment cost.

After you identify the correct instance size, you may still have a need to scale up
resources to support your application or service. One of the benefits of running solutions
on AWS is the ability to scale up or down based on demand for your application or
service. This is done through Auto Scaling and allows the ability to add additional
compute resources horizontally to support your workloads instead of vertically scaling to
larger instances. With Auto Scaling, you rest assured that while you may have tested a
certain load on a particular instance, you have the ability to grow your infrastructure
easily to handle additional load.

Application Configuration
In general, it is better to let NGINX Plus decide on the default and auto values of the
parameters to various configuration directives controlling worker process behavior and
the mechanisms used to interact with the network subsystem. Modern Linux-based
operating systems already provide enough intelligence to NGINX Plus in regards to
auto-configuration.

Worker Processes

Within NGINX, worker processes do the actual processing of requests received by the
NGINX server. We recommend letting NGINX Plus decide on the number of worker
processes by setting worker_processes to auto. The NGINX server is aware of the
system resources available to it and the auto setting allows NGINX to run one worker
process per core, which generally gives the best performance.

If you are running other CPU-intensive services on the same EC2 instance as NGINX,
the worker_processes value may need to be set to a lower value to limit the amount of
CPU that NGINX can use.

If you are running NGINX with a very large disk-based cache, the worker_processes
value may need to be increased. If your cache is larger than your available memory,
then NGINX needs to read from disk; if these disk reads become frequent, it may be
necessary for NGINX to consume additional CPU resources.

Page 8 of 31

http://nginx.org/en/docs/ngx_core_module.html%23worker_processes

Amazon Web Services - NGINX Plus on AWS October 2014

Concurrent User Connections

If your implementation is creating a large number of concurrent user connections to
backend application servers, it is important to verify that there are enough local port
numbers available for outbound connections to the backend application.

Verification of the server port range can be done using the following command:

$ sysctl net.ipv4.ip_local_port_range

If the range needs to be increased, that can be done using the following command:

$ sudo sysctl -w net.ipv4.ip_local_port_range="1024
64000"

TCP Throughput

As usage of your NGINX instance increases, it is possible that the number of
connections and the number of requests to your instance is too great and you begin to
experience packet loss, unsuccessfully processed requests, or long latency in request
processing times because the kernel cannot keep up with the request rate. One way to
overcome additional load on your instances is by implementing Auto Scaling to add
additional infrastructure to handle the additional inbound requests.

In addition to Auto Scaling, it may also be necessary for you to investigate kernel
settings of your instance to ensure that it is configured to correctly to handle the amount
of traffic that your NGINX instance is receiving. This level of troubleshooting and tuning
is out of the scope of this whitepaper. Addressing this could involve multiple
configurations within your instance. Additionally, it is important to verify if your NGINX
configuration also needs adjustment so that it is able to complement any kernel settings
that have been changed.

Performance Baselines
To confirm that your NGINX instances are performing optimally for your anticipated
workloads, it is important to baseline key aspects of your instances.

There are many performance measurement tools available which are designed to allow
you to execute large volumes of requests against your NGINX instance and get an idea
on how it performs under load. We recommend that you use not only these tools and the
metrics that they provide but also the CloudWatch metrics that are related to the
particular EC2 instances that you are using to host NGINX. Looking at both of these
together gives you a more complete picture of how your NGINX configuration is
performing.

A few generally available tools for executing basic load tests are listed below. Each of
these tools gives you the ability to execute basic HTTP queries against your NGINX
instance, in addition to a few other features. Additionally, each of these tools provides
basic reporting on performance metrics related to the test. There may be deeper pieces
of functionality that one tool offers over the other, which may best suit your testing
needs. This list is intended to be a guide on possible testing tools and there are many

Page 9 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

more tools available than are listed here. In the end, it's up to you to choose the tools
that best meet your needs.

• ab (Apache Bench)
• jmeter
• http_load
• siege
• curl-loader
• weighttp
• httperf
• wrk
• sslswamp

When you execute tests, we recommend that the test tool be run on a different instance
from the instances that are hosting NGINX so that there is no contention for resources
during the testing phase. Additionally, the instances that are executing the tests should
be in different Availability Zones and potentially different regions, to accurately simulate
realistic traffic conditions, especially if testing against Elastic Load Balancing.

It is important to note that the tools listed above provide basic tests of your NGINX
instances and that it may be necessary to also execute more detailed tests related to
specific functionality that you are trying to accomplish with your NGINX install.

Load Balancing
To balance traffic for services or applications, NGINX can be implemented as a stand-
alone load balancer or integrated behind Elastic Load Balancing. For either of these
options, there are architecture and configuration options that need to be taken into
consideration.

Integrating NGINX Plus with Elastic Load Balancing
Within AWS, it is common to place NGINX instances behind a load balancer. Elastic
Load Balancing can handle HTTP and HTTPS traffic or pass any TCP connection to
NGINX instances, which could be performing a variety of functions (web server, reverse
proxy, cache server, and so on).

After your NGINX instances are deployed and configured to take traffic, you can deploy
an Elastic Load Balancing configuration to serve as a central point for routing traffic, in a
balanced method, to your NGINX instances.

Figure 1 outlines an AWS deployment using Elastic Load Balancing and NGINX Plus for
additional traffic routing.

Page 10 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

Figure 1: Elastic Load Balancing with NGINX

To most accurately set up NGINX Plus for proxying WebSocket behind a load balancer,
support for the PROXY protocol should be activated in the NGINX configuration. The
NGINX configuration snippet below outlines an example of how to implement support for
the PROXY protocol:

http {
...
log_format elb_log '$proxy_protocol_addr - $remote_user
[$time_local] ' '"$request" $status
$body_bytes_sent "$http_referer" '
'"$http_user_agent"';

 server {
 listen 80 proxy_protocol;
 set_real_ip_from 172.31.0.0/20;
 real_ip_header proxy_protocol;
 access_log /var/log/nginx/elb-access.log
elb_log;
 location / {
 try_files $uri $uri/ /index.html;
 }
 }
}

NGINX as a Standalone Reverse Proxy and Load Balancer
One of the core applications for NGINX Plus is as a lightweight, software-only, reverse
proxy with load balancing.

The following configuration snippet shows how to load balance requests between three
application servers, using HTTP/1.1 with keepalive connections.

region

Amazon Route 53 hosted

Elastic Load Balancing

Web App 1

NGINX Plus

EC2 instances

Web App 2 Web App 3

Add
PROXY
protocol
to config
and define
CIDR

Page 11 of 31

http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

Amazon Web Services - NGINX Plus on AWS October 2014

With this configuration, requests are distributed based on the number of active
connections between NGINX Plus and application servers. This configuration also
outlines storage locations for static content. Additionally, with this configuration,
proactive health checks poll the /login/ URI every 5 seconds, ensuring continuous
application health monitoring.

upstream app1_pool {
 zone app1_pool 32k;
 server 192.168.0.1:8080;
 server 192.168.0.2:8080;
 server 192.168.0.3:8080;
 least_conn;
 sticky
cookie srv_id
expires=1h;
 keepalive 16;
}

 server {
 server_name app1.example.com;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 proxy_set_header Host
"app1.example.com";

 location / {
 proxy_pass http://app1_pool;
 health_check uri=/login/;
 }
 location ~* \.(gif|jpg|png)$ {
 expires 30d;
 }
}

When you implement an NGINX load balancer solution on Amazon EC2, we recommend
that you allocate and associate an Elastic IP address to the EC2 instance that is serving
as your load balancer. Allocating and assigning an Elastic IP address ensures that you
have a consistent IP for connections into your load balancer and gives you the flexibility
to move your load balancer to other EC2 instances while still being able to maintain the
same IP address for the entry point into your load balancer.

If your NGINX load balancer is routing traffic to EC2 instances that are part of an Auto
Scaling group, it is important to note that the NGINX server needs to be made aware of
any additional EC2 instances that are added to your Auto Scaling group. This update to
the NGINX configuration file needs to be made manually or through a script that is run
after additional instances are added or removed through Auto Scaling. When you use
the AWS CLI, the describe-auto-scaling-groups command can be used to get a
current listing of all EC2 instances that are currently launched into a designated Auto
Scaling group. This list of instances can be used to determine if additional instances
need to be included in the NGINX load-balancing configuration. For more information
about describe-auto-scaling-groups, see the AWS CLI Reference. To obtain

Set session

Application servers to balance

Reverse Proxy Configuration

URI to check for health checks

Static content image

Page 12 of 31

http://app1_pool/
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/describe-auto-scaling-groups.html

Amazon Web Services - NGINX Plus on AWS October 2014

the IP address of EC2 instances, listed in the output of the describe-auto-scaling-
groups command, the describe-instances command can be run for each identified
instance. For more information about describe-instances, see the AWS CLI
Reference.

For more information about the request routing, reverse proxy, and load balancing
capabilities of NGINX Plus, see the following pages on the NGINX.com site:

• Load Balancing with NGINX and NGINX Plus
• Load Balancing with NGINX and NGINX Plus part 2
• NGINX and NGINX Plus Admin Guide

Security
In addition to ensuring that your EC2 instances are performing correctly and are
configured correctly, it is equally important that your EC2 instances are secured
properly. Implementing security controls on EC2 instances running NGINX ensures that
access is only granted to people or resources that are authorized to access the
instances.

Securing NGINX Plus and EC2 instances
For remote user access to NGINX instances running on Amazon EC2, we recommend
that you use secure and encrypted communication protocols. The most common use
case for this is Secure Shell (SSH). We also recommend that you use public-key
authentication over SSH instead of a password, when you control access to your EC2
instances. Using key/cert-based authorization through SSH reduces the exposure of
your EC2 instances against password attacks such as dictionary and brute-force attacks.

For each user needing remote access, generate an SSH key pair and keep the private
portion of the key pair on the appropriate host for the user needing the access. The
public portion of the key pair should be placed in the .ssh directory of the home directory
of the user, on the instance that remote access is being granted.

For more information about additional tips and guidance on securing your EC2 instance,
see the “Tips for Securing your EC2 Instance” article (http://aws.amazon.com/articles).

Security Groups for EC2 Instances running NGINX
Based on the NGINX recommendations for software configuration, there are specific
security group configurations that you need to make. The configuration options in the
following table cover inbound rules needed for default NGINX configurations.

Connection
Method

Protocol Port Range Source IP or
Group

Comments

HTTP tcp 80-80 CIDR IP range that
is allowed to
access your
instances

Port to allow non-
encrypted web
traffic

Page 13 of 31

http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html
http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html
http://nginx.com/blog/load-balancing-with-nginx-plus/
http://nginx.com/blog/load-balancing-with-nginx-plus-part2/
http://nginx.com/resources/admin-guide/
https://aws.amazon.com/articles/1233/

Amazon Web Services - NGINX Plus on AWS October 2014

HTTPS tcp 443-443 CIDR IP range that
is allowed to
access your
instances

Port to allow
encrypted web
traffic

SSH tcp 22-22 CIDR IP range that
is allowed to
access your
instances

Port to allow SSH
access to the
instance

SSH tcp 873-873 CIDR IP range that
is allowed to
access your
instances

Port to allow rsync
access to the
instance

SSH udp 5405-5405 CIDR IP range that
is allowed to
access your
instances

Allows Corosync
traffic to the
instance. Used for
high availability
configuration.

As you configure your EC2 instances running NGINX, you may implement configurations
that use different ports and require network traffic to flow to those ports. Each additional
port configuration that is implemented needs to be added to the security group
configuration attached to the EC2 instances supporting your NGINX installation.

For each class of NGINX instances that are implemented (reverse proxies vs. web
servers for example), we recommend that a separate security group be created for each
class. This allows the greatest flexibility in controlling access to your NGINX hosts
without being impacted by a configuration that is also used for other non-NGINX
instances.

App-Level Security
NGINX Plus includes security-related features that can be used to mitigate erratic or
unwanted behavior from a client. Through configuration in NGINX Plus, you can limit
connections and requests as well as define access control lists (ACL) for different
locations/URI paths.

The configuration snippet below outlines a configuration for enforcing application level
security:

limit_req_zone $binary_remote_addr
zone=one:10m rate=10r/s;
limit_conn_zone $binary_remote_addr
zone=addr:10m;
server {
 server_name app1.example.com;
 location / {
 limit_req zone=one burst=30;
 proxy_pass http://app1_pool;
 }
 location /downloads/ {
 root /data/downloads;

Sets a limit on the
requests per second

Limits the number of connections,
per IP, for downloads

Page 14 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

 limit_conn addr 2;
 }
 location /private/ {
 root /data/private;
 allow 127.0.0.1;
 deny all;
 }
}

For more information about how you can enforce application security with NGINX, see
the Restricting Access topic on the NGINX website.

Architecting for High Availability
Common usages of NGINX involve supporting applications and services that must be up
and running all the time and ready to support a large number of requests. With this in
mind, it is important that you keep high availability architecture in mind when deploying
your NGINX instances within AWS. Some key high availability items to keep in mind are:

• Placing NGINX instances in multiple Availability Zones, within a region. This
approach allows for the ability to handle failures within or related to a particular
Availability Zone.

• Using Auto Scaling to confirm that a minimum number of healthy instances are
available to support your application or services. Auto Scaling also provides the
benefit of being able to add additional instances if the load on your application or
service requires additional resources.

NGINX High Availability Configuration on AWS
In addition to the high availability (HA) architecture options that AWS offers, NGINX also
includes configuration that creates an HA cluster of NGINX instances running on
Amazon EC2.

It is often desirable to have an IP address which is highly available, regardless of
infrastructure failures or changes behind the IP address. With this approach, a single IP
is mapped to a particular EC2 instance. When that instance fails or the Availability Zone
that the instance is in becomes un-reachable the IP address is mapped to an EC2
instance that is healthy or in another Availability Zone. This type of HA configuration
allows for the appropriate resources to be available to handle requests for your
application even in the event of an unexpected failure of an instance. NGINX Plus offers
the ability to have this type of configuration on AWS.

The NGINX HA solution provides the following:

1. Configuration allowing for two instances running NGINX Plus to serve your
application needs.

2. Corosync and Pacemaker configuration to monitor the health of your instances.
3. Allocation of an Elastic IP address to the primary NGINX node.
4. Re-allocation of the Elastic IP address to the secondary NGINX instance when the

primary is unhealthy or unreachable.

Only allow access to this
IP address

Page 15 of 31

http://nginx.com/resources/admin-guide/restricting-access/

Amazon Web Services - NGINX Plus on AWS October 2014

A core piece of the NGINX HA configuration includes use of Pacemaker and Corosync,
which are clustering solutions for Linux. Corosync offers a clustering engine that
facilitates the ability to create HA for applications and facilitate communications among
the instances in a cluster. Pacemaker takes advantage of the messaging capabilities
provided by Corosync and monitors the instances in the cluster for hardware and
software failures. If a failure is detected, Pacemaker recovers on healthy instances in the
cluster.

The following configuration steps outline how to set up a cluster of NGINX servers
running as an active/passive pair with one shared IP address.

Pre-Configuration Steps
Before you configure your NGINX HA instances, there are several prerequisites:

1. You must have at least one Elastic IP address available in the region in which you
are creating the HA configuration. For an Elastic IP address, available means that
the IP address has been allocated but has not been assigned to an EC2 instance.

2. You must create an IAM role and an IAM instance profile, which grants the NGINX
HA configuration the appropriate permissions on your EC2 instances. The instance
profile must then be assigned to the EC2 instances running NGINX that will be used
for HA configuration. The instance profile can only be assigned when EC2 instances
are first launched and cannot be assigned to instances that are already launched.

3. If you have existing EC2 instances running NGINX Plus and intend to deploy this HA
solution on those instances, you first need to launch new instances with the IAM
instance profile created in step 2.

Allocating an Elastic IP Address

Use the following steps to create a new Elastic IP address.

• In the AWS Management Console, choose the Amazon EC2 service.
• Under the Network and Security section, choose Elastic IPs.
• Click Allocate New Address and then choose the option to acknowledge that you

want to create a new Elastic IP address.

Alternately, you can allocate an Elastic IP address with the AWS CLI. The following CLI
command allocates a new Elastic IP address:

syntax:
$ aws ec2 allocate-address –domain vpc [--region
<region_name>]

usage:
$ aws ec2 allocate-address --domain vpc --region us-
east-1

output:
{

Page 16 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

 "PublicIp": "54.86.222.93",
 "Domain": "vpc",
 "AllocationId": "eipalloc-1e4e827b"
}

Defining an Instance Role for Use with NGINX HA Configuration

Instance roles provide the ability to manage credentials for applications running on EC2
instances. Instance roles define the permissions that an application would need and
grants the necessary permissions for that application to call AWS services. For more
information about instance roles, see Granting Applications that Run on Amazon EC2
Instances Access to AWS Resources in the Using IAM Guide.

To meet the needs of the NGINX HA functionality, create a role, which allows the
following permissions:

• Ability to assign an Elastic IP address with an instance
• Ability to disassociate an Elastic IP address with an instance
• Read-only permissions to run Amazon EC2 describe* commands

This section outlines how to create the necessary instance role manually using the IAM
console or using the AWS CLI.

To configure an instance role manually
1. In the IAM console, define the overall role, which is used to manage the policies for

the NGINX HA instances:

• In the IAM Resources section, click Roles.
• Click Create Role.
• Enter a role name, and click Next Step.
• In the Select Role Type section, choose Amazon EC2 for the service role and

click Select.
• In the Set Permissions section, choose Custom Policy and click Select.
• Enter the policy name and the policy document in the Set Permissions form

(Figure 2).

Figure 2: Custom policy for the role

Page 17 of 31

http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/role-usecase-ec2app.html

Amazon Web Services - NGINX Plus on AWS October 2014

** You can copy and paste the above policy document from the next section of this
whitepaper, configuring an instance role using the AWS CLI.

To configure an instance role using the AWS CLI
1. Define the overall role, used to manage the policies for the NGINX HA instances.

• On the instance where you will be running the AWS CLI commands, create a file
that contains the following trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
]
}

Use the following AWS CLI command to create the role and attach the trust policy:

syntax:
$ aws iam create-role –role-name <role-name> --assume-role-
policy-document file://<file-location>

usage:
$ aws iam create-role --role-name NGINX-Instance-Role --assume-
role-policy-document file:///tmp/nginx_trust_policy.txt

output:
{
 "Role": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"

 }
 }
]
 },
 "RoleId": "AROAJMNJKBBBX4B7ACUUI",
 "CreateDate": "2014-07-29T23:15:42.978Z",

Page 18 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

 "RoleName": "NGINX-Instance-Role",
 "Path": "/",
 "Arn": "arn:aws:iam::526039161745:role/NGINX-
Instance-Role"
 }
}

2. Assign the appropriate policies to the new role.

On the instance where you will be running the AWS CLI commands, create a file that
contains the following policy:

{
 "Statement": [
 {
 "Sid": "Stmt1406694815824",
 "Action": [
 "ec2:AssociateAddress",
 "ec2:Describe*",
 "ec2:DisassociateAddress"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

• Use the following AWS CLI command to associate the policy with the role:

syntax:

$ aws iam put-role-policy --role-name <role name defined above> --policy-name
<policy name from above table> --policy-document file://<location of policy
document>

usage:
$ aws iam put-role-policy --role-name NGINX-Instance-
Role --policy-name NGINX-Instance-Role-Policy --policy-
document file:///tmp/ nginx-instance-role-policy.txt

output:
There is no output for a successful execution of this
command

Page 19 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

When you create an instance role with the AWS CLI, you need to take additional steps
to create the instance profile and to associate the role with the instance profile. These
are steps that occur automatically when creating a role in the IAM console.

• Use the following AWS CLI command to create the instance profile:

syntax:
$ aws iam create-instance-profile --instance-profile-
name <instance profile name>

usage:
$ aws iam create-instance-profile --instance-profile-
name NGINX-Instance-Role

output:
{
 "InstanceProfile": {
 "InstanceProfileId": "AIPAJFTAWANM36EU4DWAU",
 "Roles": [],
 "CreateDate": "2014-07-30T03:58:58.188Z",
 "InstanceProfileName": "NGINX-Instance-Role",
 "Path": "/",
 "Arn": "arn:aws:iam::526039161745:instance-
profile/NGINX-Instance-Role"
 }
}

Use the following AWS CLI command to associate the instance profile with the role:

syntax:
$ aws iam add-role-to-instance-profile –instance-
profile-name <instance profile name> --role-name <role
name>

usage:
$ aws iam add-role-to-instance-profile --instance-
profile-name NGINX-Instance-Role --role-name NGINX-
Instance-Role

output:
There is no output for a successful execution of this
command

Page 20 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

At this point, all setup is done for the instance role and you can move onto assigning the
instance role to your EC2 instances.

Assigning Your Instance Role to EC2 Instances

The instance role is now ready to be attached to newly launched EC2 instances, which
will be used for NGINX HA.

If you launch EC2 instances via the Amazon EC2 console, the instance role can be
attached to your NGINX instances by selecting the role in the Configure Instance Details
section of the EC2 Launch Instance wizard (Figure 3).

Additionally, two EC2 instances, in the same region, are needed to support the NGINX
HA configuration. Ideally, these instances will be located in different Availability Zones in
line with recommended best practices for high availability on AWS. When launching an
instance in the Amazon EC2 console, the Availability Zone can be set in the Subnet
section of the EC2 Launch Instance wizard (Figure3).

Figure 3: Configure instance details

EC2 instances can also be launched using the AWS CLI. The relevant command for
launching instances is aws ec2 run-instances. The run-instances command
has many parameters that can be used to launch an EC2 instance. Which parameters
you choose depend on the configuration you are trying to run for your EC2 instances.
For launching two instances with the appropriate IAM role, the following parameters are
relevant:

• count: Parameter for defining the number of instances to launch.
• iam-instance-profile: Name of the instance profile to attach to the EC2 instances.
• subnet-id: ID of the subnet to launch the instance in. Used for multi-Availability Zone

instance configuration

HA Configuration Steps
Now that the pre-configuration steps are complete, the process of actually configuring
NGINX on the EC2 instances can be started.

The first step in setting up an HA pair of NGINX Plus servers is to install the nginx-ha
package on both EC2 instances.

Page 21 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

On NGINX Plus Amazon Linux AMI, install nginx-ha with the following command:

$ sudo yum install nginx-ha

On NGINX Plus Ubuntu AMI, the install command is:

$ sudo apt-get install nginx-ha

After successful installation, run the setup command:

$ sudo nginx-ha-setup

The nginx-ha-setup script should be invoked on both EC2 instances, simultaneously.
The script on each instance then prompts for:

• The EC2 instance ID of the other HA peer instance
• The host name
• The Elastic IP address to be made highly available

Throughout the configuration process, you need to switch back and forth between each
instance, as each step of the installation process needs to be run in sequence on each
of the instances.

When you complete the configuration, a functioning, two-node active/passive cluster
should be up and running and an Elastic IP address is assigned to the instance that you
designated as primary during the configuration process. The status of the running cluster
can be determined by running the following command from either of the instances that
were just configured:

$ sudo crm status bynode

Here is the sample output of the crm status bynode command for two nodes named
nginxha100 and nginxha101, and with the Elastic IP address running on nginha100:

 ============
 Last updated: Wed Mar 19 02:46:49 2014
 Last change: Wed Mar 19 02:46:42 2014 via cibadmin
on nginxha101
 Stack: openais
 Current DC: nginxha101 – partition with quorum
 Version: 1.1.6-
9971ebba4494012a93c03b40a2c58ec0eb60f50c
 2 Nodes configured, 2 expected votes
 2 Resources configured.
 ============
 Node nginxha100: online
 ha-ip (ocf::heartbeat:IPaddr2) Started
 ha-nginx (ocf::nginx-ha:nginx-ha) Started
 Node nginxha101: online

If everything is working correctly, running the following command produces the same
output on both nodes:

Page 22 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

$ sudo crm status bynode

Details of the Pacemaker configuration can be obtained by running the following
command:

$ sudo crm configure show

NGINX HA Architecture Considerations
When you implement the NGINX HA configuration, there are several different
architecture options that you can choose. A key point to keep in mind for determining the
correct architecture is that Elastic IP addresses are allocated at the AWS region level.
This means that you cannot have an HA configuration that relies on one Elastic IP
address being shared between EC2 instances in different regions.

A basic architecture for NGINX HA would consist of two EC2 instances running the
NGINX HA configuration, with each EC2 instance in a different Availability Zone of an
AWS region.

Figure 4 outlines a sample architecture, at the AWS region level, using the NGINX HA
configuration. There are lots of ways to architect the web apps that sit below the NGINX
instances. The point to take note of in this diagram is that the NGINX HA instances are
in different Availability Zones within an AWS region. This acts as a safeguard so that if
there are problems in an Availability Zone, the failover instance can successfully take
over work from the primary.

Figure 4: Sample NGINX high availability architecture

Using Amazon Route 53 offers other opportunities to have multiple groups of NGINX HA
configurations distributed among multiple AWS regions. This configuration could be used
to support a disaster recovery scenario or even to support load balancing across AWS
regions. With this approach, an Elastic IP address would be allocated in each region that
is intended to support the NGINX HA configuration. The necessary HA configuration
would be done on each of the EC2 instances within each region, resulting in the Elastic
IP address in each region being mapped to a primary NGINX instance. Amazon

Page 23 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

Route 53 can then be configured to support routing policies that best support your
needs. These routing policies include Simple, Weighted, Latency, Failover, and
Geolocation. For more information about Amazon Route 53 routing policies,
see Choosing a Routing Policy in the Amazon Route 53 Developer Guide.

Figure 5 shows an example architecture with two NGINX HA configurations in different
regions supported by Amazon Route 53 for request routing.

Figure 5: NGINX high availability across regions

Additional Configuration Considerations
After completing installation of the NGINX HA solution on Amazon EC2, it is important to
verify that both EC2 instances have the appropriate configuration for the services that
are being made highly available. Additionally, as changes are deployed to these
instances, it is important that they are deployed to both instances to ensure that
application functionality is unchanged in the case of a failover from one instance to
another.

The default timeout used by Corosync to consider a node as down is 1 second. This
default timeout, as well as the other parameters can be changed in Corosync
configuration (check /etc/nginx-ha/templates/corosync.conf.tmpl).

The installation and configuration of NGINX for high availability comes with the default
configuration for Corosync and Pacemaker. This allows for an active/passive
configuration with two NGINX instances. If needed, more complex configurations such
as active/active or using more than two instances can be created. Making these
changes requires changes to the Pacemaker configuration. For more information about
configuration changes to Pacemaker, see the ClusterLabs documentation.

Page 24 of 31

http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html
http://clusterlabs.org/doc/

Amazon Web Services - NGINX Plus on AWS October 2014

Monitoring
Monitoring what is going on with your applications and EC2 instances is just as
important as the initial configuration and performance testing. Through proper
monitoring, you can have visibility into how your application and infrastructure are
performing under various real-world conditions. Additionally, proper monitoring provides
you with the opportunity to be able to take action at key moments before they become
problems, keeping risk to your application or service low.

Running NGINX on EC2 instances provides several different opportunities to monitor
what is going on with your instances and be positioned to take action before your
application or users are negatively impacted.

Amazon CloudWatch
With CloudWatch, you can have a complete monitoring solution for all aspects of your
NGINX instance and the applications that it is serving. When you run NGINX on EC2
instances, you get access to a group of metrics that are delivered for all EC2 instances.
By default, the following metrics are presented for all EC2 instances:

• CPU Utilization (Percent)
• Disk Reads (Bytes)
• Disk Read Operations (Operations)
• Disk Writes (Bytes)
• Disk Write Operations (Operations)
• Network In (Bytes)
• Network Out (Bytes)
• Status Check Failed (Count)

For more information about each of the default EC2 metrics, see Amazon Elastic
Compute Cloud Dimensions and Metrics in the Amazon CloudWatch Developer Guide.

Integrating NGINX Metrics with CloudWatch
CloudWatch supports the ability to import custom metrics related to your NGINX
instances running on Amazon EC2. If you integrate these custom metrics into
CloudWatch, you can view these metrics on their own or along with other Amazon EC2
or custom metrics. Additionally, custom metrics can be used to build alarms against your
application metrics.

NGINX provides a set of metrics that give insight into activity related to work that NGINX
is doing. Additionally, NGINX also provides functionality, which gives the ability to import
these metrics into CloudWatch. The following section outlines how to configure delivery
of NGINX metrics to CloudWatch.

Configuring NGINX to Deliver Metrics to CloudWatch

Configuring NGINX to deliver metrics to CloudWatch is a multi-step process. This
process involves:

• Configuring NGINX to collect and report its metrics

Page 25 of 31

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ec2-metricscollected.html

Amazon Web Services - NGINX Plus on AWS October 2014

• Granting permission for your EC2 instance to post metrics to CloudWatch
• Installing and configuring the package for sending NGINX metrics to CloudWatch
• Running background process to collect and deliver metrics to CloudWatch

To configure NGINX to collect and report its metrics
For more information about how to enable the specialized monitoring for NGINX, see
the Live Activity Monitoring topic on the NGINX.com site.

To grant permission for your EC2 instance to post metrics to CloudWatch
Permission for posting metrics from an EC2 instance to CloudWatch is controlled
through IAM instance roles. To enable delivery of NGINX metrics to CloudWatch, the
instance role tied to the EC2 instance on which NGINX is running needs to be updated,
or a new instance role needs to be created and assigned to the EC2 instance.

If you already have an instance role tied to the EC2 instance on which NGINX is running,
then the role needs to be updated with an additional policy. A standalone policy to allow
CloudWatch access looks like the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1398821442000",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": [
 "*"
]
 }
]
}

If a new instance role needs to be created to support CloudWatch integration or if the
CloudWatch policy needs to be added to an existing instance role, the details of how to
accomplish this are outlined in the manual instance role configuration section of this
whitepaper.

To install and configure the package for sending NGINX metrics to CloudWatch
Integration with CloudWatch is accomplished with the nginx-cw-agent package.

On the NGINX Plus Amazon Linux AMI, install nginx-cw-agent with the following
command:

$ sudo yum install nginx-cw-agent

On NGINX Plus Ubuntu AMI, the install command is:

Page 26 of 31

http://nginx.com/products/live-activity-monitoring/

Amazon Web Services - NGINX Plus on AWS October 2014

$ sudo apt-get install nginx-cw-agent

After the package has been installed, the next step is to update the agent configuration
file with details about where the status information can be retrieved. The configuration
file is located at: /etc/nginx-cw-agent/nginx-cw-agent.ini

At the bottom of the nginx-cw-agent.ini file, are examples of how to structure the
configuration for retrieving status information. The two possible configurations are:

[source1]
name=exampleorg
url=http://example.org/status

[source2]
name=examplecom
url=http://example.com/status
http_user=testuser
http_pass=testpass

For each of the examples, the names configuration represents the name that is given to
the group of metrics when they are viewed in CloudWatch. If you use a meaningful value
for the namespace, that helps you find the metrics easily in CloudWatch. The URL
configuration represents the URL path to the NGINX host from which the status is
collected. The http_user and http_pass values represent a username and password for
accessing the status page, if authorization for accessing your application is enabled.

In addition to the source configuration, the global configuration of pool_interval can also
be changed. This configuration represents the frequency, in seconds that the status
metrics is polled for delivery to CloudWatch.

To verify metrics background processes
After you complete the configuration, you can submit the agent to collect metrics and
send them to CloudWatch. Before you submit the background agent, you can test your
configuration and verify that metrics are being collected. Running the following command
enables the agent to run in the foreground and give visibility as to whether metrics are
successfully being collected and posted:

 $ /usr/bin/nginx-cw-agent.py -f start

After you have verified the metrics agent configuration file, you can submit the agent to
run in the background. The following command enables the agent to run in the
background:

 $ sudo service nginx-cw-agent start

The logging for the agent is written to the /var/log/nginx-cw-agent.log file for any analysis
or troubleshooting needs.

After the metrics agent is running, the collected metrics are available in CloudWatch. To
view your metrics, navigate to the CloudWatch dashboard in the AWS Management
Console.

Page 27 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

On the dashboard, click Browse Metrics.

On the “CloudWatch Metrics by Category” page click the Custom Metrics list and select
the value that you chose for the name parameter of the NGINX metrics agent. Choosing
this value takes you to the CloudWatch metrics page related to the metrics for your
NGINX metrics.

In addition to the custom NGINX metrics discussed above, CloudWatch supports the
ability to import any other custom metrics that you define. For more information about
how to import additional custom metrics into CloudWatch, see Publish Custom Metrics in
the Amazon CloudWatch Developer Guide.

Integrating NGINX Logs with CloudWatch
CloudWatch enables you to import and store your application log files. After the log files
are imported, CloudWatch can serve as your log file repository so you can retain log files
for a period of time that you define and then rotate out log files that are older than the
retention period. Additionally, CloudWatch allows you to scan your log files for particular
patterns and then turn these into metrics that can be viewed and reported on within
CloudWatch. After metrics are defined for the contents of your log files, you can also
create alarms against the metrics and send notifications or take actions such as Auto
Scaling.

NGINX provides the ability to configure error and access logging. Error logs provide
insight into errors of various severity levels, which have occurred within the NGINX
application. Access logs provide information about client requests after the requests
have been processed. For more information about how to configure these logs,
see Logging and Monitoring on the NGINX web site.

Both of these types of log files can be imported into CloudWatch for log analysis and
metric generation. For example, CloudWatch could be used to count the number of 404
errors within a log file, which would then be an additional metric available for analysis
and alarm generation. For more information about CloudWatch logs, including how to
integrate your logs into CloudWatch, see Monitoring System, Application, and Custom
Log Files in the Amazon CloudWatch Developer Guide.

CloudWatch Logs can be used to ingest log files for one to many hosts. If you have
multiple hosts running NGINX and you need to monitor the same log file from all hosts,
you can consolidate these under one CloudWatch Log group. Within CloudWatch, you
have the ability to drill down from a log group down to an EC2 instance and then to the
log file entries for that instance. When you create metrics against a log group that covers
multiple instances, the metric is at the log group level and thus covers all hosts.
Additionally, any alarms created for metrics generated from logs are also at the log
group level, allowing you to have alarming at a level covering your overall application
fleet.

Figure 6 shows a metric filter, which is configured to capture metrics that match a pattern
in the NGINX access.log file. In this case, any 400-type status codes are captured in the
metric. When you define a metric filter, you have full flexibility about what information
you want to capture from your log files and you can have multiple metric filters that cover
one log group.

Page 28 of 31

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/publishingMetrics.html
http://nginx.com/resources/admin-guide/logging-and-monitoring/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html

Amazon Web Services - NGINX Plus on AWS October 2014

Figure 6: NGINX access log filter

With the metric filter defined, there is now a custom CloudWatch metric that charts the
status codes that the filter pattern is looking for. With a metric in place, you can view the
metric data in CloudWatch or create an alarm to take action based on certain thresholds.

Figure 7 shows an example alarm that was created to alarm on a certain amount of 400-
type status codes within a designated amount of time.

Figure 7: Alarm configuration for 400 type errors

In addition to viewing log messages and metrics within CloudWatch, you can also use
the CloudWatch Log API to extract log messages and their metrics from CloudWatch
and analyze or import the log information into other applications.

Backup Strategy
It is important to ensure that your NGINX configuration is preserved and able to
withstand instance and storage failures. This preservation allows you to recover quickly
and completely.

In AWS, the NGINX application code and configuration files are stored on the root
volume of the EC2 instance. This root volume is backed by Amazon EBS. With this in

Page 29 of 31

Amazon Web Services - NGINX Plus on AWS October 2014

mind, there are several strategies that you can employ to confirm that your current
configuration is appropriate. Some of these options are:

1) Create an AMI of your current NGINX production configuration every time that a
change is made. Creating an AMI of your current production configuration allows you
have a starting point for new or replacement EC2 instances for your NGINX needs.
This new AMI should be used for new production instances as well as creating
additional instances through Auto Scaling or replacing failed instances. For more
information about how to create an AMI from a running EC2 instance, see Creating
an Amazon EBS-Backed Linux AMI in the Amazon EC2 User Guide for Linux.

2) Create snapshots of the root Amazon EBS volume on the EC2 instance that has
your golden production NGINX configuration. This snapshot will allow your current
configuration to be preserved and allows you to create a new Amazon EBS volume
and recover your configuration as needed. Volumes created from snapshots can be
attached to existing instances or new instances. For more information about taking
Amazon EBS snapshots, see Amazon EBS Snapshots in the Amazon EC2 User
Guide for Linux.

3) Store your NGINX configuration files in a version-enabled Amazon S3 bucket. Use
the Amazon EC2 user data functionality to have a script run at instance launch,
which pulls the current version of the configuration files from Amazon S3 and places
them in the correct location on your NGINX instance. For more information about
how to implement the Amazon EC2 user data functionality, see Launching Instances
with User Data in the Amazon EC2 User Guide for Linux. Alternately, create a boot
script, built into your NGINX AMI, which grabs the latest configuration file from
Amazon S3 upon instance boot, and deploys that file to the appropriate location on
your NGINX instance.

4) Use continuous integration software, such as Jenkins, to build AMIs containing your
NGINX configuration programmatically, and have them ready for production
deployment.

Additional NGINX Configuration Options
In addition to the usage and configuration options mentioned in this whitepaper, there
are many other configuration options available with NGINX Plus available to you. These
include:

• SSL Termination
http://nginx.com/resources/admin-guide/nginx-ssl-termination/
http://nginx.org/en/docs/http/ngx_http_ssl_module.html

• App Edge Caching
http://nginx.org/en/docs/http/ngx_http_proxy_module.html - proxy_cache
http://nginx.org/en/docs/http/ngx_http_proxy_module.html - proxy_cache_path

• Streaming Media
http://nginx.com/solutions/fast-scalable-video-delivery/

• Application Caching
http://nginx.org/en/docs/http/ngx_http_memcached_module.html

Page 30 of 31

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
http://nginx.com/resources/admin-guide/nginx-ssl-termination/
http://nginx.org/en/docs/http/ngx_http_ssl_module.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html%23proxy_cache
http://nginx.org/en/docs/http/ngx_http_proxy_module.html%23proxy_cache_path
http://nginx.com/solutions/fast-scalable-video-delivery/
http://nginx.org/en/docs/http/ngx_http_memcached_module.html

Amazon Web Services - NGINX Plus on AWS October 2014

Conclusion
AWS provides a unique set of services for running Internet applications. Pairing NGINX
Plus with the existing AWS offerings allows customers the ability to create a fully
functioning, high performance, highly available, and secure Internet application. Using
NGINX Plus with AWS services such as Amazon EC2, Elastic Load Balancing, Auto
Scaling, and CloudWatch allows customers to leverage AWS services while taking
advantage of key NGINX functionality that they want to run their applications.

Additional Getting Started Resources
For NGINX documentation, see http://nginx.org/en/docs/.

For the NGINX Beginners Guide, see http://nginx.org/en/docs/beginners_guide.html.

For more information about NGINX Plus, see http://nginx.com/products.

For information about AWS, see http://aws.amazon.com.

©2014, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Page 31 of 31

http://nginx.org/en/docs/
http://nginx.org/en/docs/beginners_guide.html
http://nginx.com/products
http://aws.amazon.com/

	Abstract
	Introduction
	AWS Services Overview
	Amazon EC2
	Security Groups
	Elastic IP Address

	Auto Scaling
	Amazon Elastic Block Storage
	AWS Identity and Access Management
	Amazon CloudWatch
	Elastic Load Balancing
	AWS Command Line Interface
	Amazon Route 53

	Where NGINX Plus Fits
	Using NGINX Plus on Amazon EC2
	Basic Installation
	One-Click Launch from the AWS Marketplace
	Launch with the Amazon EC2 Console
	Connect to and Verify Your Instance

	NGINX Configuration Files
	Performance
	Amazon EC2 Instance Sizing
	Application Configuration
	Worker Processes
	Concurrent User Connections
	TCP Throughput

	Performance Baselines
	Load Balancing
	Integrating NGINX Plus with Elastic Load Balancing
	NGINX as a Standalone Reverse Proxy and Load Balancer

	Security
	Securing NGINX Plus and EC2 instances
	Security Groups for EC2 Instances running NGINX
	App-Level Security

	Architecting for High Availability
	NGINX High Availability Configuration on AWS
	Pre-Configuration Steps
	Allocating an Elastic IP Address
	Defining an Instance Role for Use with NGINX HA Configuration
	To configure an instance role manually
	To configure an instance role using the AWS CLI

	Assigning Your Instance Role to EC2 Instances

	HA Configuration Steps
	NGINX HA Architecture Considerations
	Additional Configuration Considerations

	Monitoring
	Amazon CloudWatch
	Integrating NGINX Metrics with CloudWatch
	Configuring NGINX to Deliver Metrics to CloudWatch
	To configure NGINX to collect and report its metrics
	To grant permission for your EC2 instance to post metrics to CloudWatch
	To install and configure the package for sending NGINX metrics to CloudWatch
	To verify metrics background processes

	Integrating NGINX Logs with CloudWatch

	Backup Strategy
	Additional NGINX Configuration Options
	Conclusion
	Additional Getting Started Resources

